Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
267 result(s) for "Paddock, R."
Sort by:
Attosecond and nano-Coulomb electron bunches via the Zero Vector Potential mechanism
The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.
One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh–Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, in-flight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct-drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion. While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
Whole-beam self-focusing in fusion-relevant plasma
Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara–Kodama–Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
Preparations for a European R&D roadmap for an inertial fusion demo reactor
A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
Pathways towards break even for low convergence ratio direct-drive inertial confinement fusion
Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of one-dimensional-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.
Nonlinear wakefields and electron injection in cluster plasma
Laser and beam driven wakefields promise orders of magnitude increases in electric field gradients for particle accelerators for future applications. Key areas to explore include the emittance properties of the generated beams and overcoming the dephasing limit in the plasma. In this paper, the first in-depth study of the self-injection mechanism into wakefield structures from nonhomogeneous cluster plasmas is provided using high-resolution two dimensional particle-in-cell simulations. The clusters which are typical structures caused by ejection of gases from a high-pressure gas jet have a diameter much smaller than the laser wavelength. Conclusive evidence is provided for the underlying mechanism that leads to particle trapping, comparing uniform and cluster plasma cases. The accelerated electron beam properties are found to be tunable by changing the cluster parameters. The mechanism explains enhanced beam charge paired with large transverse momentum and energy which has implications for the betatron x-ray flux. Finally, the impact of clusters on the high-power laser propagation behavior is discussed.
World War I and Propaganda
World War I and Propaganda offers a new look at a familiar subject. Scholars examine the complex negotiations involved in propaganda within the British Empire, in occupied territories, in neutral nations, and how war should be conducted.
Flexibility is not Related to Stretch-Induced Deficits in Force or Power
Previous studies have demonstrated that an acute bout of static stretching may cause significant performance impairments. However, there are no studies investigating the effect of prolonged stretch training on stretch-induced decrements. It was hypothesized that individuals exhibiting a greater range of motion (ROM) in the correlation study or those who attained a greater ROM with flexibility training would experience less stretch-induced deficits. A correlation study had 18 participants (25 ± 8.3 years, 1.68 ± 0.93 m, 73.5 ± 14.4 kg) stretch their quadriceps, hamstrings and plantar flexors three times each for 30 s with 30 s recovery. Subjects were tested pre- and post-stretch for ROM, knee extension maximum voluntary isometric contraction (MVIC) force and drop jump measures. A separate training study with 12 subjects (21.9 ± 2.1 years, 1.77 ± 0.11 m 79.8 ± 12.4 kg) involved a four-week, five-days per week, flexibility training programme that involved stretching of the quadriceps, hamstrings and plantar flexors. Pre- and post-training testing included ROM as well as knee extension and flexion MVIC, drop and countermovement jump measures conducted before and after an acute bout of stretching. An acute bout of stretching incurred significant impairments for knee extension (-6.1% to -8.2%; p < 0.05) and flexion (-6.6% to -10.7%; p < 0.05) MVIC, drop jump contact time (5.4% to 7.4%; p < 0.01) and countermovement jump height (-5.5% to -5.7%; p < 0.01). The correlation study showed no significant relationship between ROM and stretch-induced deficits. There was also no significant effect of flexibility training on the stretch-induced decrements. It is probable that because the stretches were held to the point of discomfort with all testing, the relative stress on the muscle was similar resulting in similar impairments irrespective of the ROM or tolerance to stretching of the muscle. Key PointsA correlation and training study were used to examine the effects of increased range of motion on stretch-induced changes in force and jump measuresAn acute bout of stretching incurred significant impairments for knee extension and flexion MVIC, drop jump contact time and countermovement jump height.Neither study showed any significant relationship between ROM and stretch-induced deficits.
One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh–Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, inflight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct-drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion.While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
Whole-beam self-focusing in fusion-relevant plasma
Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultraintense laser pulse used to generate fast electrons which form a hot spot on the side of precompressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara–Kodama–Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.