Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Pal, Sujay"
Sort by:
Post-translational modification-dependent oligomerization switch in regulation of global transcription and DNA damage repair during genotoxic stress
2024
Mechanisms of functional cross-talk between global transcriptional repression and efficient DNA damage repair during genotoxic stress are poorly known. In this study, using human AF9 as representative of Super Elongation Complex (SEC) components, we delineate detailed mechanisms of these processes. Mechanistically, we describe that Poly-Serine domain-mediated oligomerization is pre-requisite for AF9 YEATS domain-mediated TFIID interaction-dependent SEC recruitment at the promoter-proximal region for release of paused RNA polymerase II. Interestingly, during genotoxic stress, CaMKII-mediated phosphorylation-dependent nuclear export of AF9-specific deacetylase HDAC5 enhances concomitant PCAF-mediated acetylation of K339 residue. This causes monomerization of AF9 and reduces TFIID interaction for transcriptional downregulation. Furthermore, the K339 acetylation-dependent enhanced AF9-DNA-PKc interaction leads to phosphorylation at S395 residue which reduces AF9-SEC interaction resulting in transcriptional downregulation and efficient repair of DNA damage. After repair, nuclear re-entry of HDAC5 reduces AF9 acetylation and restores its TFIID and SEC interaction to restart transcription.
Here the authors show that the human transcription elongation factor AF9, part of Super Elongation Complex (SEC), undergoes oligomerization which can be reverted by post-translational modification in regulation of global transcription.
Journal Article
D- and F-Region Ionospheric Response to the Severe Geomagnetic Storm of April 2023
by
Sen, Arnab
,
Das, Bakul
,
Mondal, Sushanta K.
in
Analysis
,
Atmosphere, Upper
,
Charged particles
2025
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst ∼ −212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 kHz) radio signals and ionosonde data. We analyze VLF/LF signals received by SuperSID monitors located in mid-latitude (Europe) and low-latitude (South America, Colombia) areas across nine different propagation paths in the Northern Hemisphere. Mid-latitude regions exhibited a daytime amplitude perturbation, mostly an increase, by ∼3–5 dB during the storm period, with a subsequent recovery after 7–8 days post April 23. In contrast, signals received in low-latitude regions (UTP, Colombia) did not show significant variation during the storm-disturbed days. We also observe that the 3-hour average of foF2 data declined by up to 3 MHz on April 23 and April 24 at the European Digisonde stations. However, no significant variation in foF2 was observed at the low-latitude Digisonde stations in Brazil. Both the VLF and ionosonde data exhibited anomalies during the storm period in the European regions, confirming that both D- and F-region ionospheric perturbation was caused by the severe geomagnetic storm.
Journal Article
First Detection of Global Ionospheric Disturbances Associated with the Most Powerful Gamma Ray Burst GRB221009A
by
Shvets, Alexander
,
Koloskov, Oleksandr
,
Hayakawa, Masashi
in
Brightest Gamma Ray Burst
,
D region
,
Daytime
2023
We present the first report of global ionospheric disturbances due to the most powerful Gamma Ray Burst GRB221009A occurred on 9 October 2022. Very Low Frequency (VLF) and Low Frequency (LF) sub-ionospheric radio signals are used to diagnose the effect of the GRB on the lower ionosphere. Both daytime and nighttime effects are analyzed in VLF and LF bands. The magnitude of VLF signal perturbations varied with the propagation condition (day/night), path length, and frequency of the signal. The recovery times for the VLF/LF signals to get back to their pre-GRB levels varied from 2–60 min. Radio signals reflected from the E-region ionosphere for nighttime VLF signals and daytime LF signals showed greater effects compared to the daytime VLF signals reflected from the lower parts of the D-region.
Journal Article
Theoretical study of lower ionospheric response to solar flares: sluggishness of D-region and peak time delay
by
Basak, Tamal
,
Chakrabarti, Sandip K.
,
Palit, Sourav
in
Astrobiology
,
Astronomical bodies
,
Astronomy
2015
The rates of ion production and loss processes in the lower ionosphere during solar and other astronomical ionizing events vary with height. This variations influence the time lags of the response in different ionospheric layers. Very Low Frequency (VLF) signals reflected from any of these layers follow this time lag or delay during a transient cosmic events. One of the easiest ways to study this property is to observe the shift in the peak of VLF signal amplitude with respect to the peak of solar flares. We numerically model to find ion densities and resulting VLF signal perturbations during some solar flares. We clearly find from the model that the delay in the peak of the electron densities (with respect to peak of the ionizing event) in the lower ionosphere varies from height to height. The result also depends on the properties of events, such as peak intensity and sharpness. We investigate analytically how the delay of electron density peak should depend on height varying chemical rate parameters as well as the nature of transient events. Our capability is demonstrated using three classes (namely, X, M and C) of solar flares. The work is a step forward in our goal to employ ionosphere as a natural detector for astronomical observations.
Journal Article
Simulation of diurnal variation of sub-ionospheric VLF transmitter signals using machine learning approach
by
Giri, Kinsuk
,
Pal, Sujay
in
Artificial neural networks
,
Correlation coefficient
,
Correlation coefficients
2021
This paper shows simulation models for diurnal variation of sub-ionospheric Very Low Frequency (VLF) signals using machine learning approach. Recording of VLF transmitter signals using a ground-based radio receiver provides a beautiful and cost-effective way of monitoring the lower ionosphere (D/E regions) in the altitude range (60-90 km). VLF signals respond to the ionization variations due to the Sun and other terrestrial or extra-terrestrial sources. Consequently, it has many applications in remote sensing of the lower ionosphere. Therefore, predicting or simulating the diurnal variation of VLF transmitter signals using past data will help to understand the variability of the ionosphere. Here, the VLF signal from the Indian transmitter VTX (18.2 kHz) received at Kolkata is used for the training, validating, and testing purposes in the machine learning models. Two predictive models, multiple linear regression (MLR) and artificial neural network (ANN) have been built and Pearson correlation coefficients outside the training range are obtained as R=0.94 and R=0.93 respectively for the two models. Variation of the VLF transmitter signal is also calculated using the well-known Long Wave Propagation Capability (LWPC) code coupled with the International Reference Ionosphere (IRI-2016) model and the same is compared with the MLR and ANN model predictions. Both the MLR and ANN models are found to be performing better than the LWPC simulation.
Numerical modelling of VLF radio wave propagation through earth-ionosphere waveguide and its application to sudden ionospheric disturbances
2015
In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a historic event, namely, the lunar occultation of a solar flare during the annular solar eclipse of 15th January, 2010 and find the effects on the D-region electron density profiles.
IMPACT OF TWO TROPICAL CYCLONES ON THE RADIO ATMOSPHERICS OBSERVED USING VLF RECEIVERS
by
Haldar, Prabir K
,
Pal, Sujay
,
Sen, Arnab
in
Anomalies
,
Atmospherics
,
Cloud-to-ground lightning
2021
The response of electric field intensity of VLF radio atmospherics during two tropical cyclones Fani (May 2019) and Amphan (May 2020) has been presented in this paper. VLF radio atmospherics (or VLF sferics) received at Coochbehar (CHB) and Kolkata (CUB) at three discrete frequencies (4 kHz, 7 kHz, and 9 kHz) showed clear amplitude anomalies with respect to the reference level during the two cyclonic storms. This is explained using the electrical structure and distribution of cloud-to-ground lightning associated with the cyclones. Effects of 'local lightning' and 'distant lightning' have been identified for both the CUB and CHB receivers. Field intensity of VLF sferics at CUB station was found to get enhanced for both types of lightning events. But the intensity of VLF sferics at CHB station was found to be reduced for 'distant lightning' and enhanced for 'local lightning', possible reasons of which are also explained.
RESULTS OF COMPUTING AMPLITUDE AND PHASE OF THE VLF WAVE USING WAVE HOP THEORY
2011
We present the basics of the wave hop theory to compute the amplitude and phase of the VLF signals. We use the Indian Navy VTX transmitter at 18.2 kHz as an example of the source and compute the VLF propagation characteristics for several propagation paths using the wave-hop theory. We find the signal amplitudes as a function of distance from the transmitter using wave hop theory in different bearing angles and compare with the same obtained from the Long Wave Propagation Capability (LWPC) code which uses the mode theory. We repeat a similar exercise for the diurnal and seasonal behavior. We note that the signal variation by wave hop theory gives more detailed information in the day time. We further present the spatial variation of the signal amplitude over whole of India at a given time including the effect of sunrise and sunset terminator and also compare the same with that from the mode theory. We point out that the terminator effect is clearly understood in wave hop results than that from the mode theory.
Book Chapter
Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.)
2022
Maize is a heavy consumer of fertilizer nitrogen (N) which not only results in the high cost of cultivation but may also lead to environmental pollution. Therefore, there is a need to develop N-use efficient genotypes, a prerequisite for which is a greater understanding of N-deficiency stress adaptation. In this study, comparative transcriptome analysis was performed using leaf and root tissues from contrasting inbred lines, viz., DMI 56 (tolerant to N stress) and DMI 81 (susceptible to N stress) to delineate the differentially expressed genes (DEGs) under low-N stress. The contrasting lines were grown hydroponically in modified Hoagland solution having either sufficient- or deficient-N, followed by high-throughput RNA-sequencing. A total of 8 sequencing libraries were prepared and 88–97% of the sequenced raw reads were mapped to the reference B73 maize genome. Genes with a
p
value ≤ 0.05 and fold change of ≥ 2.0 or ≤ − 2 were considered as DEGs in various combinations performed between susceptible and tolerant genotypes. DEGs were further classified into different functional categories and pathways according to their putative functions. Gene Ontology based annotation of these DEGs identified three different functional categories: biological processes, molecular function, and cellular component. The KEGG and Mapman based analysis revealed that most of the DEGs fall into various metabolic pathways, biosynthesis of secondary metabolites, signal transduction, amino acid metabolism, N-assimilation and metabolism, and starch metabolism. Some of the key genes involved in N uptake (high-affinity nitrate transporter 2.2 and 2.5), N assimilation and metabolism (glutamine synthetase, asparagine synthetase), redox homeostasis (SOD, POX), and transcription factors (MYB36, AP2-EREBP) were found to be highly expressed in the tolerant genotype compared to susceptible one. The candidate genes identified in the present study might be playing a pivotal role in low-N stress adaptation in maize and hence could be useful in augmenting further research on N metabolism and development of N-deficiency tolerant maize cultivars.
Journal Article