Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
63
result(s) for
"Palensky, Peter"
Sort by:
Power flow analysis using quantum and digital annealers: a discrete combinatorial optimization approach
by
Vergara, Pedro P.
,
Palensky, Peter
,
Kaseb, Zeynab
in
639/166/987
,
639/4077/4073/4071
,
639/4077/4073/4099
2024
Power flow (PF) analysis is a foundational computational method to study the flow of power in an electrical network. This analysis involves solving a set of non-linear and non-convex differential-algebraic equations. State-of-the-art solvers for PF analysis, therefore, face challenges with scalability and convergence, specifically for large-scale and/or ill-conditioned cases characterized by high penetration of renewable energy sources, among others. The adiabatic quantum computing paradigm has been proven to efficiently find solutions for combinatorial problems in the noisy intermediate-scale quantum (NISQ) era, and it can potentially address the limitations posed by state-of-the-art PF solvers. For the first time, we propose a novel adiabatic quantum computing approach for efficient PF analysis. Our key contributions are (i) a combinatorial PF algorithm and a modified version that aligns with the principles of PF analysis, termed the adiabatic quantum PF algorithm (AQPF), both of which use Quadratic Unconstrained Binary Optimization (QUBO) and Ising model formulations; (ii) a scalability study of the AQPF algorithm; and (iii) an extension of the AQPF algorithm to handle larger problem sizes using a partitioned approach. Numerical experiments are conducted using different test system sizes on D-Wave’s Advantage™ quantum annealer, Fujitsu’s digital annealer V3, D-Wave’s quantum-classical hybrid annealer, and two simulated annealers running on classical computer hardware. The reported results demonstrate the effectiveness and high accuracy of the proposed AQPF algorithm and its potential to speed up the PF analysis process while handling ill-conditioned cases using quantum and quantum-inspired algorithms.
Journal Article
Effects of Cyber Attacks on AC and High-Voltage DC Interconnected Power Systems with Emulated Inertia
by
Pan, Kaikai
,
Dong, Jingwei
,
Palensky, Peter
in
AC/HVDC interconnections
,
attack impact
,
Communication
2020
The high penetration of renewable energy resources and power electronic-based components has led to a low-inertia power grid which would bring challenges to system operations. The new model of load frequency control (LFC) must be able to handle the modern scenario where controlled areas are interconnected by parallel AC/HVDC links and storage devices are added to provide virtual inertia. Notably, vulnerabilities within the communication channels for wide-area data exchange in LFC loops may make them exposed to various cyber attacks, while it still remains largely unexplored how the new LFC in the AC/HVDC interconnected system with emulated inertia would be affected under malicious intrusions. Thus, in this article, we are motivated to explore possible effects of the major types of data availability and integrity attacks—Denial of Service (DoS) and false data injection (FDI) attacks—on such a new LFC system. By using a system-theoretic approach, we explore the optimal strategies that attackers can exploit to launch DoS or FDI attacks to corrupt the system stability. Besides, a comparison study is performed to learn the impact of these two types of attacks on LFC models of power systems with or without HVDC link and emulated inertia. The simulation results on the the exemplary two-area system illustrate that both DoS and FDI attacks can cause large frequency deviations or even make the system unstable; moreover, the LFC system with AC/HVDC interconnections and emulated inertia could be more vulnerable to these two types of attacks in many adversarial scenarios.
Journal Article
Load Concentration Factor Based Analytical Method for Optimal Placement of Multiple Distribution Generators for Loss Minimization and Voltage Profile Improvement
by
Shahzad, Mohsin
,
Gawlik, Wolfgang
,
Ahmad, Ishtiaq
in
Distribution costs
,
Energy
,
exhaustive load flow (ELF)
2016
This paper presents novel separate methods for finding optimal locations, sizes of multiple distributed generators (DGs) simultaneously and operational power factor in order to minimize power loss and improve the voltage profile in the distribution system. A load concentration factor (LCF) is introduced to select the optimal location(s) for DG placement. Exact loss formula based analytical expressions are derived for calculating the optimal sizes of any number of DGs simultaneously. Since neither optimizing the location nor optimizing the size is done iteratively, like existing methods do, the simulation time is reduced considerably. The exhaustive method is used to find the operational power factor, and it is shown with the results that the losses are further reduced and voltage profile is improved by operating the DGs at operational power factor. Results for power loss reduction and voltage profile improvement in IEEE 37 and 119 node radial distribution systems are presented and compared with the the loss sensitivity factor (LSF) method, improved analytical (IA) and exhaustive load flow method (ELF). The comparison for operational power factor and other power factors is also presented.
Journal Article
EMT Real-Time Simulation Model of a 2 GW Offshore Renewable Energy Hub Integrating Electrolysers
by
Rueda Torres, Jose Luis
,
Marchand, Jane
,
Shetgaonkar, Ajay
in
Alternative energy sources
,
Electricity
,
electrolyser
2021
Due to their weak nature, such as low inertia, offshore energy hubs are prone to unprecedented fast dynamic phenomena. This can lead to undesired instability problems. Recent literature, with main focus on onshore systems, suggests that electrolysers could be an attractive option to support wind generators in the mitigation of balancing problems. This paper presents an Electromagnetic Transient (EMT) model for real-time simulation based study of the dynamics of active power and voltage responses of offshore hubs due to wind speed fluctuations. The purpose of this study was to ascertain the ability of an electrolyser to support an offshore energy hub under different scenarios and with different locations of the electrolyser. Two locations of Proton Exchange Membrane (PEM) electrolysers were considered: centralised (at the AC common bus of the hub) or distributed (at the DC link of the wind turbines). Numerical simulations conducted in RSCAD® on a 2 GW offshore hub with 4 × 500 MW wind power plants and 330 or 600 MW PEM electrolysers show that electrolysers can effectively support the mitigation of sudden wind speed variations, irrespective of the location. The distributed location of electrolysers can be beneficial to prevent large spillage of wind power generation during the isolation of faults within the hub.
Journal Article
Quantification and Mitigation of Unfairness in Active Power Curtailment of Rooftop Photovoltaic Systems Using Sensitivity Based Coordinated Control
by
Palensky, Peter
,
Gawlik, Wolfgang
,
Latif, Aadil
in
active power curtailment (APC)
,
Consumption
,
Control
2016
With increasing photovoltaic (PV) penetration in low voltage networks (LVNs), voltage regulation is a challenge. Active power curtailment (APC) is one possible solution for mitigating over voltages resulting from active power injection in LVNs. There is an inherent unfairness in the APC scheme. When generation is high and consumption is low, the voltages at the end of the feeder tend to be the highest. This results in high curtailment of active power output of the inverters located at the end of the feeder and low or even no curtailment for the inverts located closer to the transformer. A secondary voltage controller has been implemented to mitigate this unfairness in APC based voltage support schemes. The focus of this work is to quantify this unfairness and develop methods that enable residential PV owners serviced by the same feeder to participate equally in voltage regulation in the LVN.
Journal Article
Microsecond Enhanced Indirect Model Predictive Control for Dynamic Power Management in MMC Units
by
Shetgaonkar, Ajay
,
Palensky, Peter
,
Lekić, Aleksandra
in
Design
,
Mathematical models
,
model predictive control
2021
The multi-modular converter (MMC) technology is becoming the preferred option for the increased deployment of variable renewable energy sources (RES) into electrical power systems. MMC is known for its reliability and modularity. The fast adjustment of the MMC’s active/reactive powers, within a few milliseconds, constitutes a major research challenge. The solution to this challenge will allow accelerated integration of RES, without creating undesirable stability issues in the future power system. This paper presents a variant of model predictive control (MPC) for the grid-connected MMC. MPC is defined using a Laguerre function to reduce the computational burden. This is achieved by reducing the number of parameters of the MMC cost function. The feasibility and effectiveness of the proposed MPC is verified in the real-time digital simulations. Additionally, in this paper, a comparison between an accurate mathematical and real-time simulation (RSCAD) model of an MMC is given. The comparison is done on the level of small-signal disturbance and a Mean Absolute Error (MAE). In the MMC, active and reactive power controls, AC voltage control, output current control, and circulating current controls are implemented, both using PI and MPC controllers. The MPC’s performance is tested by the small and large disturbance in active and reactive powers, both in an offline and online simulation. In addition, a sensitivity study is performed for different variables of MPC in the offline simulation. Results obtained in the simulations show good correspondence between mathematical and real-time analytical models during the transient and steady-state conditions with low MAE. The results also indicate the superiority of the proposed MPC with the stable and fast active/reactive power support in real-time simulation.
Journal Article
Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity
by
Palensky, Peter
,
Gawlik, Wolfgang
,
Ullah, Ikram
in
Available Transfer Capability (ATC)
,
Computer engineering
,
Devices
2016
The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC). To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS) devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC) of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI) sensitivity factors. TTC is computed using the Repeated Power Flow (RPF) method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.
Journal Article
Economic Dispatch Using Modified Bat Algorithm
by
Palensky, Peter
,
Latif, Aadil
in
bat algorithm (BA)
,
economic dispatch
,
genetic algorithm (GA)
2014
Economic dispatch is an important non-linear optimization task in power systems. In this process, the total power demand is distributed amongst the generating units such that each unit satisfies its generation limit constraints and the cost of power production is minimized. This paper presents an over view of three optimization algorithms namely real coded genetic algorithm, particle swarm optimization and a relatively new optimization technique called bat algorithm. This study will further propose modifications to the original bat. Simulations are carried out for two test cases. First is a six-generator power system with a simplified convex objective function. The second test case is a five-generator system with a non-convex objective function. Finally the results of the modified algorithm are compared with the results of genetic algorithm, particle swarm and the original bat algorithm. The results demonstrate the improvement in the Bat Algorithm.
Journal Article
Validation of EMT Digital Twin Models for Dynamic Voltage Performance Assessment of 66 kV Offshore Transmission Network
by
Torres, Jose Rueda
,
Palensky, Peter
,
Perilla, Arcadio
in
Alternative energy sources
,
Cables
,
digital twin model
2021
The increase in Power Electronic (PE) converters due to the increase in offshore wind energy deployment have given rise to technical challenges (e.g., due to unprecedented fast dynamic phenomena) related to voltage and frequency stability in the power system. In the Offshore Wind Farms (OWFs), the currently available current injection-based voltage control for PE converters are not suitable for voltage control in PE dominated systems due to the absence of continuous voltage control and ineffectiveness during islanding. Moreover, in such power systems, the conventional controllers are not suitable for frequency control due to the absence of dynamic frequency control. The paper presents the Direct Voltage Control (DVC) strategy in a real-time environment to mitigate challenges related to voltage and frequency stability during islanding of OWFs. The control strategy is implemented in the average Electro-magnetic Transient (EMT) model of Type-4 Wind Generator (WG) in RSCAD® Version 5.011.1. It is compared with the benchmark model of the control strategy in DIgSILENT PowerFactoryTM 2019 SP2 (×64) in EMT platform. The comparison based on short-term voltage stability and reactive current injection reveals that both the models provide similar results, confirming the validation of the RSCAD model. Moreover, the detailed representation of the converters in the RSCAD model provides a better depiction of the real-world operation.
Journal Article
Multi-market demand response from pump-controlled open canal systems: an economic MPC approach to pump-scheduling
by
Lugt, Dorien
,
van Nooijen, Ronald
,
van der Heijden, Ties
in
Alternative energy sources
,
Canals
,
Carbon dioxide
2022
Participation in demand response (DR) has been explored for many large energy-using assets based on day ahead electricity markets. In this manuscript, we propose the use of multiple electricity spot markets to enable price-based DR for open canal systems in the Netherlands, where many large pumping stations are used for flood mitigation and control of groundwater levels. In the new strategy for pump-scheduling, we combine the day ahead and intraday electricity markets to be used in a hierarchical receding horizon economic Model Predictive Control (MPC). We formulate the decision problem as a Mixed-Integer Quadratic Problem (MIQP), to be solved to near global optimality. A cost-potential analysis was performed for multiple market strategies and the automatic Frequency Restoration Reserves (aFRRs), using actual market and water system data. We show new insights into the trade-off between CO2 emissions and operating cost, the difference between the German and Dutch markets, and temporal changes in market conditions due to renewable energy integration. We observe that the German energy market is rewarding DR more than the Dutch equivalent, due to the higher renewable energy market penetration. The proposed multi-market strategy leads to a cost decrease of 10 and 16% in the Netherlands in 2017 and 2019, respectively. When applying German market scenarios, we found a cost-saving potential of 56 and 50% in 2017 and 2019, respectively. The cost-saving potential for the aFRR market was found to be up to 12% in the Netherlands and 28% in Germany, through a conservative analysis. The results suggest that the proposed control system, optimising costs over the day ahead, intraday and possibly the aFRR markets, is profitable compared to the current strategy in both the current and future electricity market.
Journal Article