Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"Palmada-Flores, Marc"
Sort by:
Real‐time genomics for One Health
2023
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well‐understood. Here, we describe how the advent of real‐time genomic analyses can benefit One Health and how it can enable timely, in‐depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real‐time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real‐time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself – from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real‐time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Graphical Abstract
The One Health concept describes the inextricable link between human and environmental health. This review discusses how real‐time genomics can improve our understanding of the interdependencies within ‘One Health’ and enable timely assessments and interventions in many contexts.
Journal Article
Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats
by
Koelman, Julia
,
Palacios-Gimenez, Octavio M.
,
Cooper, Steven J. B.
in
Accumulation
,
Animals
,
Annotations
2020
Background
Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the “repeatome”, are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper
Vandiemenella viatica
species complex and determine their contribution to genome evolution.
Results
We obtained linked-read genome assemblies of 2.73–3.27 Gb from estimated genome sizes of 4.26–5.07 Gb DNA per haploid genome of the four chromosomal races of
V. viatica
. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314–463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the
V. viatica
chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the
V. viatica
species complex.
Conclusion
This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire
Drosophila
genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.
Journal Article
Y chromosome sequence and epigenomic reconstruction across human populations
2023
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
This study generates genome assemblies for seven major haplogroups of the human Y chromosome at a unique resolution that overcomes the structurally complex regions within. These data enable the detection and profiling of epigenetic modifications among the considered haplogroups.
Journal Article
The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics
by
Izquierdo-Arànega, Guillem
,
Marquès-Bonet, Tomàs
,
Cuevas-Caballé, Cristian
in
Biodiversity
,
Biodiversity hot spots
,
Conserved sequence
2024
The Catalan Initiative for the Earth BioGenome Project (CBP) is an EBP-affiliated project network aimed at sequencing the genome of the >40 000 eukaryotic species estimated to live in the Catalan-speaking territories (Catalan Linguistic Area, CLA). These territories represent a biodiversity hotspot. While covering less than 1% of Europe, they are home to about one fourth of all known European eukaryotic species. These include a high proportion of endemisms, many of which are threatened. This trend is likely to get worse as the effects of global change are expected to be particularly severe across the Mediterranean Basin, particularly in freshwater ecosystems and mountain areas. Following the EBP model, the CBP is a networked organization that has been able to engage many scientific and non-scientific partners. In the pilot phase, the genomes of 52 species are being sequenced. As a case study in biodiversity conservation, we highlight the genome of the Balearic shearwater Puffinus mauretanicus, sequenced under the CBP umbrella.
Journal Article
Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy
2023
Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).
Journal Article
Unveiling the evolutionary history of European vipers and their venoms from a multi-omic approach
2024
Snake genomes attract significant attention from multiple disciplines, including medicine, drug bioprospection, and evolutionary biology, due to the unique features found in snakes, especially, the evolution of venom. However, genomic research within the family Viperidae has mostly focused to date on the subfamily Crotalinae, while overlooking Viperinae, the Old World vipers. Among Viperinae, European vipers (Vipera) have been the subject of extensive research because of their venoms, phylogeographic, and ecological diversification. Nevertheless, venom research in this group has been conducted using mostly proteomes alone, while phylogeography and systematics in the genus have relied on biased information from mitochondrial phylogenies. Here, we generated chromosome-level genome assemblies for three Vipera species and whole-genome sequencing data for 94 samples representing 15 Vipera taxa. This comprehensive dataset has enabled us to disentangle the phylogenomic relationships of this genus, affected by mito-nuclear discordance and pervaded by ancestral introgression. Population-level analyses in the Iberian Peninsula, where the three oldest lineages within Vipera meet, revealed signals of recent adaptive introgression between ecologically dissimilar species, whereas chromosomal rearrangements isolate species occupying similar niches. Finally, using transcriptomic and proteomic data, we characterized the Vipera toxin-encoding genes, in which opposing selective forces were unveiled as common drivers of the evolution of venom as an integrated phenotype.
Y chromosome sequence and epigenomic reconstruction across human populations
2022
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for 7 major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications amongst the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for 7 major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications amongst the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
Too much too many: comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats
2020
The repeatome, the collection of repetitive DNA sequences represented by transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), is found in high proportion in organisms across the tree of life. Grasshoppers have large genomes (average 9 Gb), containing large amounts of repetitive DNA which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of the repeatome and its contribution to genome evolution, in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex.
We obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far (the largest being two locust grasshoppers). Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs constituting 66 to 75 % per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome size is likely due to similar rates of TE accumulation across the four races. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a repertoire of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex.
In-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Although the TE and satDNA repertoires were rather similar between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.