Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
370
result(s) for
"Pan, Haibo"
Sort by:
Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally
2024
Agriculture contributes to a decline in local species diversity and to above- and below-ground biotic homogenization. Here, we conduct a continental survey using 1185 soil samples and compare microbial communities from natural ecosystems (forest, grassland, and wetland) with converted agricultural land. We combine our continental survey results with a global meta-analysis of available sequencing data that cover more than 2400 samples across six continents. Our combined results demonstrate that land conversion to agricultural land results in taxonomic and functional homogenization of soil bacteria, mainly driven by the increase in the geographic ranges of taxa in croplands. We find that 20% of phylotypes are decreased and 23% are increased by land conversion, with croplands enriched in
Chloroflexi, Gemmatimonadota, Planctomycetota, Myxcoccota and Latescibacterota
. Although there is no significant difference in functional composition between natural ecosystems and agricultural land, functional genes involved in nitrogen fixation, phosphorus mineralization and transportation are depleted in cropland. Our results provide a global insight into the consequences of land-use change on soil microbial taxonomic and functional diversity.
Agricultural land-use change affects belowground biodiversity. Here, the authors compare soil microbial communities from natural ecosystems and agricultural systems, finding that agricultural conversion leads to taxonomic and functional homogenisation.
Journal Article
Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS
2022
Proanthocyanidins (PACs) have been proven to possess a wide range of biological activities, but complex structures limit their study of structure–function relationships. Therefore, an efficient and general method using hydrophilic interaction high-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight tandem mass spectrometry (HILIC-QTOF-MS) was established to analyze PACs from different plant materials. This method was successfully applied to characterize PACs from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves (BLPs), sorghum testa (STPs) and grape seeds (GSPs). BLPs with the degree of polymerization (DP) from 1 to 8 were separated. BLPs are mainly B-type prodelphinidins and A-type BLPs were first found in this study. STPs and GSPs belonging to procyanidins showed DP from 3 to 11 and 2 to 12, respectively. A-type linkages were found for every DP of STPs and GSPs, which were first found. These results showed that HILIC-QTOF-MS can be successfully applied for analyzing PACs from different plant materials, which is necessary for the prediction of their potential health benefits.
Journal Article
Aridity Threshold Induces Abrupt Change of Soil Abundant and Rare Bacterial Biogeography in Dryland Ecosystems
2022
Aridity, which is increasing worldwide due to climate change, affects the biodiversity and functions of dryland ecosystems. We provided the first statistical evidence for abrupt changes of species coexistence, ecological processes, and niche conservation of abundant and rare soil bacteria triggered by diversity to abrupt increases in aridity. Aridity, which is increasing worldwide due to climate change, affects the biodiversity and functions of dryland ecosystems. Whether aridification leads to gradual (or abrupt) and systemic (or specific) changes in the biogeography of abundant and rare microbial species is largely unknown. Here, we investigated stress-adaptive changes (aridity-driven, ranging from 0.65 to 0.94) and biogeographic patterns of abundant and rare bacterial communities in different habitats, including agricultural field, forest, wetland, grassland, and desert, in desert oasis transition zones in northern China. We observed abrupt changes at the breakpoint of aridity values (0.92), characterized by diversity (α-diversity and β-diversity), species coexistence, community assembly processes, and phylogenetic niche conservatism. Specifically, when aridity was <0.92, increasing aridity led to more deterministic assembly and species coexistences for the abundant subcommunity, whereas the reverse was observed for the rare subcommunity. The phylogenetic niche conservatism for both subcommunities increased slowly with aridity. When aridity was >0.92, the systemic responses of abundant and rare taxa changed dramatically in a consistent direction, such that both subcommunities rapidly tended to have a more deterministic assembly, species coexistence, and stronger phylogenetic niche conservatism with increasing aridity. In addition, the change rates of abundant taxa were higher than those of rare taxa, indicating the more sensitive responses of abundant taxa along aridity variation. This finding has important implications for understanding the impact of aridity on the structure and function of abundant and rare soil taxa and how diversity maintenance is associated with soil microbiota responding to global change. The abrupt threshold of soil bacteria found can be used for buffering and for building effective adaptation and mitigation measures aimed at maintaining the capacity of drylands for basic ecosystem functioning. IMPORTANCE Aridity, which is increasing worldwide due to climate change, affects the biodiversity and functions of dryland ecosystems. We provided the first statistical evidence for abrupt changes of species coexistence, ecological processes, and niche conservation of abundant and rare soil bacteria triggered by diversity to abrupt increases in aridity. The abrupt threshold of soil bacterial community response to aridity is spatially heterogeneous at the local scale and should be specified according to local conditions for buffering and for building effective adaptation and mitigation measures aimed at maintaining the capacity of drylands for basic ecosystem functioning.
Journal Article
Polyphenol‐Based Functional Materials: Structural Insights, Composite Strategies, and Biomedical Applications
2025
Polyphenols hold significant promise in pharmaceutical, biotechnology, and food‐related applications owing to their potent free radical scavenging, antimicrobial, antitumor, and other properties. The unique chemical architecture, featuring multiple phenolic hydroxyl groups and aromatic ring systems‐confers a high capacity for both non‐covalent (e.g., hydrogen bonding, π–π stacking, metal ion coordination) and covalent interactions (e.g., Michael addition, Schiff base formation). These versatile interaction modes underpin the rational design and engineering of advanced composite materials with tailored functionalities. Recent advances in nanotechnology and materials science have catalyzed the integration of polyphenols with broad biomaterials, including metals, polysaccharides, and proteins, to enhance their biocompatibility, mechanical properties, and therapeutic efficacy. This review systematically explores the sources, structures, and physiological activities of polyphenols, elucidating their interaction mechanisms with different materials. Emphasis focuses on the design of polyphenol‐based nanomaterials, bioactive scaffolds, and smart drug delivery platforms capable of modulating local microenvironments and orchestrating cellular responses for precision therapeutic interventions. The translational potential of these functional materials in regenerative and precision medicine is also critically examined, alongside key challenges such as stability, responsiveness, and the fine‐tuning of release kinetics. This schematic representation illustrates the interaction mechanisms between polyphenolic compounds and various materials (metals, proteins, polysaccharides, alkaloids, etc.). And explains the potential clinical application value of these materials (nanoparticles, coatings, films, capsules, and hydrogels constructed using polyphenols) in the fields of regenerative medicine and precision medicine through their intelligent functional characteristics (photothermal effects, pH responsiveness, etc.). Created with BioRender.com.
Journal Article
Extraction, Purification, Component Analysis and Bioactivity of Polyphenols from Artemisia dracunculus L
by
Abudureheman, Buhailiqiemu
,
Zhang, Jianlin
,
Chen, Lin
in
A. dracunculus L
,
Adsorption
,
Antibacterial activity
2025
A. dracunculus L., is a species of traditional Chinese medicine herbs, widely distributed northwestern China and used as antidiabetic, antibacterial etc., but the active compounds and their abundance have not been systematically investigated. This research focused on the following: (i) optimizing polyphenol extraction/purification from A. dracunculus; (ii) UPLC-QE-based profiling of polyphenolic composition; (iii) FT-IR-assisted structural elucidation; and (iv) functional assessment of antioxidant and antibacterial properties. The results showed that the highest extraction yield of crude polyphenols of A. dracunculus (CPA) reached 5.02 ± 0.04% at an ethanol concentration of 70% of 70 °C with a solid-to-liquid ratio of 1:20 (g/mL). The D101 macroporous resin is the best one for polyphenolpurification of A. dracunculus (PPA), with a purification efficiency of 60.48 ± 1.87%. UPLC-QE analysis identified 36 polyphenolic compounds in PPA, in whic the content of protocatechuic acid is the highest at 1338.05 ± 1.83 ng/mg. The absorption peaks at 1691 cm−1 (carbonyl, C=O), 1605 cm−1and 1518 cm−1 (aromatic C=C), as well as 1275 cm−1 and 1369 cm−1 (C-O stretching), indicated the presence of phenolic acids, flavonoids and tannins in PPA by FT-IR. PPA exhibited significant antioxidant activity, which reached 81.73 ± 1.43% for DPPH, 87.11 ± 1.57% for hydroxyl and 85.74 ± 1.52% for ABTS+. It also demonstrated strong antibacterial activity against nine common pathogenic bacteria, but not to Escherichia coli. A. dracunculus polyphenols demonstrate potent bioactive properties, suggesting potential applications in functional foods and natural preservatives.
Journal Article
Bioactive Profiling and Anti-Hyperglycemic Potential of Berberis nummularia Bunge: Role of Polyphenols and α-Amylase Inhibition
2025
The
fruit is rich in polyphenols and which are associated with the inhibition of carbohydrate-digesting enzymes. However, the phytochemical compositions, antioxidant strength, and the ability of the fruits on the inhibition of α-amylase to control postprandial blood glucose remained elusive. In this study, therefore, different concentrations of ethanol were used in ultrasound processing at 70 °C for 1 h to obtain the crude polyphenol of
fruit (CPB) and obtain the purified polyphenol (PPB) using AB-8 macroporous resin. After this, the polyphenolic constituents within PPB were identified using LC-MS/QTOF and investigated for anti-hyperglycemic properties by sucrose loading test. The results showed that the optimal extraction yield (44.32 ± 2.08%) of CPB was achieved with 30% ethanol and the PPB from CPB was reached at 71.88 ± 2.74%. A total of 30 polyphenols including 13 phenolic acids, 13 flavonoids, 3 benzaldehyde derivatives, and 1 aromatic acid were identified, in which the caffeic acid had the highest content (426.20 ± 0.18 ng/mg). The PPB displayed potent α-amylase inhibitory activity with an IC
value of 69.91 μg/mL and kinetic analysis via Lineweaver-Burk double reciprocal plots confirmed a non-competitive inhibition mechanism. Moreover, at an administration dose of 100 mg/kg body weight (BW), PPB significantly reduced blood glucose levels by 13.75 ± 0.87% and exerted a marked ameliorative effect on postprandial hyperglycemia in vivo. Therefore, these findings provide a foundation for considering PPB as a beneficial functional food ingredient and a potential dietary supplement for the management of postprandial hyperglycemia.
Journal Article
Thermal Modulation of Musalais Wine Characteristics: Volatile Profiles and Chemical Composition at Different Brix Levels
2025
This study investigated the effects of fermentation temperatures (22 °C, 25 °C, 28 °C) and concentrations of grape juice Brix (26 °, 29 °, 32 °) on the physicochemical and aroma profiles of Musalais wine, a traditional fermented alcoholic beverage from Xinjiang, China. The results indicated that higher fermentation temperatures (28 °C) increased total acidity (TA) and residual sugar content (RSC), whereas lower temperatures (22 °C) resulted in higher pH, phenolic content, and anthocyanin content. Ethanol content reached its peak at 25 °C, particularly in Musalais wines produced from 29 Brix of concentrated grape juice. GC-IMS analysis identified 50 volatile organic compounds (VOCs), with esters (30%), alcohols (22%), and ketones (12%) dominating the aroma profile. Wines fermented at 22 °C exhibited the most complex VOC profiles, characterized by fruity esters (ethyl propanoate) and caramel-like ketones (4-methyl-2-pentanone). In contrast, fermentation at 28 °C produced simpler alcohol-dominated aroma profiles. Multivariate analysis (PCA and PLS-DA) confirmed distinct clustering based on temperature, with 19 key markers (ethyl 2-methylpentanoate, 3-octanone) differentiating the Musalais wines. Correlation analysis revealed strong relationships between ethanol, TA, RSC, and specific VOCs. Hierarchical clustering grouped the wines into two categories: those fermented at 22 °C (fruity and rich in complexity) and those fermented at 25–28 °C (alcoholic and simpler profiles). These findings demonstrate that fermentation temperature significantly impacts Musalais wine quality, with 22 °C being optimal for aroma complexity, while 25 °C provided a balance between ethanol production and antioxidant retention. Brix levels of concentrated grape juice modulated acidity and sweetness. This study offers practical insights for optimizing Musalais wine production through controlled fermentation conditions.
Journal Article
Effects of Pretreatment Methods on Volatile Compounds in Fermented Cabernet Sauvignon Musalais by Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)
2025
This study investigated the correlation between flavor compounds and basic physicochemical properties of ordinary wine and Musalais wine with different pretreatment processes derived from Cabernet Sauvignon grapes. Key findings revealed significant differences in volatile compositions between Cabernet Sauvignon Musalais and the control group (ordinary wine, conventional Cabernet Sauvignon wine). Musalais samples exhibited certain commonalities in volatile profiles across different fermentation temperatures, and significant distinctions were also observed. Gas chromatography–ion mobility spectrometry (GC-IMS) identified 32 volatile compounds, with esters being the predominant contributors. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) based on the peak volumes of the 32 variables demonstrated that the first two principal components accounted for 72.2% of the cumulative variance, enabling effective differentiation of wine samples from the ordinary wine and Musalais of different treatment groups. PLS-DA further screened 13 characteristic biomarkers from the 32 volatile compounds through variable importance in projection (VIP) scoring. A correlation analysis was conducted on the basic indicators and volatile components of ordinary wine and three Musalais wines under different treatments, revealing differences both among the basic indicators (such as residual sugar, total phenolics, total acidity, total flavonoids, pH, and ethanol content) and between these indicators and volatile components. This methodology provides novel insights into crafting Cabernet Sauvignon Musalais with a unique flavor profile, advancing the optimization of fermentation strategies for traditional Chinese fruit wines.
Journal Article
RG-I Domain Matters to the In Vitro Fermentation Characteristics of Pectic Polysaccharides Recycled from Citrus Canning Processing Water
2023
Canned citrus is a major citrus product that is popular around the world. However, the canning process discharges large amounts of high-chemical oxygen demand wastewater, which contains many functional polysaccharides. Herein, we recovered three different pectic polysaccharides from citrus canning processing water and evaluated their prebiotic potential as well as the relationship between the RG-I domain and fermentation characteristics using an in vitro human fecal batch fermentation model. Structural analysis showed a large difference among the three pectic polysaccharides in the proportion of the rhamnogalacturonan-I (RG-I) domain. Additionally, the fermentation results showed that the RG-I domain was significantly related to pectic polysaccharides’ fermentation characteristics, especially in terms of short-chain fatty acid generation and modulation of gut microbiota. The pectins with a high proportion of the RG-I domain performed better in acetate, propionate, and butyrate production. It was also found that Bacteroides, Phascolarctobacterium, and Bifidobacterium are the main bacteria participating in their degradation. Furthermore, the relative abundance of Eubacterium_eligens_group and Monoglobus was positively correlated with the proportion of the RG-I domain. This study emphasizes the beneficial effects of pectic polysaccharides recovered from citrus processing and the roles of the RG-I domain in their fermentation characteristics. This study also provides a strategy for food factories to realize green production and value addition.
Journal Article
One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin
2023
Nanotechniques for curcumin (Cur) encapsulation provided a potential capability to avoid limitations and improve biological activities in food and pharmaceutics. Different from multi-step encapsulation systems, in this study, zein–curcumin (Z–Cur) core-shell nanoparticles could be self-assembled within Eudragit S100 (ES100) fibers through one-pot coaxial electrospinning with Cur at an encapsulation efficiency (EE) of 96% for ES100–zein–Cur (ES100–Z–Cur) and EE of 67% for self-assembled Z–Cur. The resulting structure realized the double protection of Cur by ES100 and zein, which provided both pH responsiveness and sustained release performances. The self-assembled Z–Cur nanoparticles released from fibermats were spherical (diameter 328 nm) and had a relatively uniform distribution (polydispersity index 0.62). The spherical structures of Z–Cur nanoparticles and Z–Cur nanoparticles loaded in ES100 fibermats could be observed by transmission electron microscopy (TEM). Fourier transform infrared spectra (FTIR) and X-ray diffractometer (XRD) revealed that hydrophobic interactions occurred between the encapsulated Cur and zein, while Cur was amorphous (rather than in crystalline form). Loading in the fibermat could significantly enhance the photothermal stability of Cur. This novel one-pot system much more easily and efficiently combined nanoparticles and fibers together, offering inherent advantages such as step economy, operational simplicity, and synthetic efficiency. These core-shell biopolymer fibermats which incorporate Cur can be applied in pharmaceutical products toward the goals of sustainable and controllable intestine-targeted drug delivery.
Journal Article