Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
589
result(s) for
"Pan, Xiaoqing"
Sort by:
Tunable intrinsic strain in two-dimensional transition metal electrocatalysts
2019
Tuning surface strain is a powerful strategy for tailoring the reactivity of metal catalysts. Traditionally, surface strain is imposed by external stress from a heterogeneous substrate, but the effect is often obscured by interfacial reconstructions and nanocatalyst geometries. Here, we report on a strategy to resolve these problems by exploiting intrinsic surface stresses in two-dimensional transition metal nanosheets. Density functional theory calculations indicate that attractive interactions between surface atoms lead to tensile surface stresses that exert a pressure on the order of 10⁵ atmospheres on the surface atoms and impart up to 10% compressive strain, with the exact magnitude inversely proportional to the nanosheet thickness. Atomic-level control of thickness thus enables generation and fine-tuning of intrinsic strain to optimize catalytic reactivity, which was confirmed experimentally on Pd(110) nanosheets for the oxygen reduction and hydrogen evolution reactions, with activity enhancements that were more than an order of magnitude greater than those of their nanoparticle counterparts.
Journal Article
Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films
2020
The pairing mechanism in cuprates remains as one of the most challenging issues in condensed matter physics. Recently, superconductivity was discovered in thin films of the infinite-layer nickelate Nd
1-x
Sr
x
NiO
2
(x = 0.12–0.25) which is believed to have the similar
3d
9
orbital electrons as that in cuprates. Here we report single-particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted well by a
d
-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Combining with theoretical calculations, we attribute the
d
-wave gap to the pairing potential of the
Ni-
3
d
x
2
−
y
2
orbital. Several possible reasons are given for explaining the full gap feature. Our results indicate both similarities and distinctions between the newly found Ni-based superconductors and cuprates.
The recent observation of superconductivity in nickelate thin films has attracted a lot of attentions. Here, authors report single particle tunneling spectra on the superconducting nickelate thin films revealing two types of gap feature with one V-shape and the other a full gap.
Journal Article
Structural evolution of atomically dispersed Pt catalysts dictates reactivity
2019
The use of oxide-supported isolated Pt-group metal atoms as catalytic active sites is of interest due to their unique reactivity and efficient metal utilization. However, relationships between the structure of these active sites, their dynamic response to environments and catalytic functionality have proved difficult to experimentally establish. Here, sinter-resistant catalysts where Pt was deposited uniformly as isolated atoms in well-defined locations on anatase TiO2 nanoparticle supports were used to develop such relationships. Through a combination of in situ atomic-resolution microscopy- and spectroscopy-based characterization supported by first-principles calculations it was demonstrated that isolated Pt species can adopt a range of local coordination environments and oxidation states, which evolve in response to varied environmental conditions. The variation in local coordination showed a strong influence on the chemical reactivity and could be exploited to control the catalytic performance.Oxide-supported isolated Pt-group metal atoms as catalytic active sites are of interest because of their unique reactivity. Isolated Pt species are now shown to adopt a range of local coordination environments and oxidation states in response to environmental conditions.
Journal Article
Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution
2020
1T-MoS
2
and single-atom modified analogues represent a highly promising class of low-cost catalysts for hydrogen evolution reaction (HER). However, the role of single atoms, either as active species or promoters, remains vague despite its essentiality toward more efficient HER. In this work, we report the unambiguous identification of Ni single atom as key active sites in the basal plane of 1T-MoS
2
(Ni@1T-MoS
2
) that result in efficient HER performance. The intermediate structure of this Ni active site under catalytic conditions was captured by in situ X-ray absorption spectroscopy, where a reversible metallic Ni species (Ni
0
) is observed in alkaline conditions whereas Ni remains in its local structure under acidic conditions. These insights provide crucial mechanistic understanding of Ni@1T-MoS
2
HER electrocatalysts and suggest that the understanding gained from such in situ studies is necessary toward the development of highly efficient single-atom decorated 1T-MoS
2
electrocatalysts.
While single atom catalysis combines heterogeneous materials with molecular understanding, the role of the single atoms remains vague. Here, authors examine single Ni on MoS
2
via in situ X-ray absorption spectroscopy to reveal the intermediate and catalytically active species.
Journal Article
Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides
2022
The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties.
Fundamental understanding of local atomic features of high entropy oxides (HEOs) is limited due to their compositional complexity. Here the authors show composition fluctuation induced local oxygen octahedral distortion, chemical bond covalency and correlated properties in a series of HEOs.
Journal Article
Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution
2019
Engineering catalytic sites at the atomic level provides an opportunity to understand the catalyst’s active sites, which is vital to the development of improved catalysts. Here we show a reliable and tunable polyoxometalate template-based synthetic strategy to atomically engineer metal doping sites onto metallic 1T-MoS
2
, using Anderson-type polyoxometalates as precursors. Benefiting from engineering nickel and oxygen atoms, the optimized electrocatalyst shows great enhancement in the hydrogen evolution reaction with a positive onset potential of ~ 0 V and a low overpotential of −46 mV in alkaline electrolyte, comparable to platinum-based catalysts. First-principles calculations reveal co-doping nickel and oxygen into 1T-MoS
2
assists the process of water dissociation and hydrogen generation from their intermediate states. This research will expand on the ability to improve the activities of various catalysts by precisely engineering atomic activation sites to achieve significant electronic modulations and improve atomic utilization efficiencies.
While heterogeneous catalysts can act as tangible, efficient materials for energy conversion, understanding the active catalytic sites is challenging. Here, authors engineer specific catalytic sites into molybdenum sulfide to improve and elucidate hydrogen evolution electrocatalysis.
Journal Article
Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction
2019
Advanced electrocatalysts with low platinum content, high activity and durability for the oxygen reduction reaction can benefit the widespread commercial use of fuel cell technology. Here, we report a platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with a low platinum loading of only 2.4 wt% for the use in alkaline fuel cell cathodes. This ternary catalyst shows a mass activity that is enhanced by a factor of 30.6 relative to a commercial platinum catalyst, which is attributed to the unique charge localization induced by platinum-trimer decoration. The high stability of the decorated trimers endows the catalyst with an outstanding durability, maintaining decent electrocatalytic activity with no degradation for more than 322,000 potential cycles in alkaline electrolyte. These findings are expected to be useful for surface engineering and design of advanced fuel cell catalysts with atomic-scale platinum decoration.
Fuel cells are promising for converting fuel into electricity, but rely on development of high-performance catalysts for oxygen reduction. Here the authors report a highly durable platinum-trimer decorated cobalt-palladium catalyst with low platinum loading for electrocatalysis of oxygen reduction.
Journal Article
Experimental observation of localized interfacial phonon modes
2021
Interfaces impede heat flow in micro/nanostructured systems. Conventional theories for interfacial thermal transport were derived based on bulk phonon properties of the materials making up the interface without explicitly considering the atomistic interfacial details, which are found critical to correctly describing thermal boundary conductance. Recent theoretical studies predicted the existence of localized phonon modes at the interface which can play an important role in understanding interfacial thermal transport. However, experimental validation is still lacking. Through a combination of Raman spectroscopy and high-energy-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we report the experimental observation of localized interfacial phonon modes at ~12 THz at a high-quality epitaxial Si-Ge interface. These modes are further confirmed using molecular dynamics simulations with a high-fidelity neural network interatomic potential, which also yield thermal boundary conductance agreeing well with that measured in time-domain thermoreflectance experiments. Simulations find that the interfacial phonon modes have an obvious contribution to the total thermal boundary conductance. Our findings significantly contribute to the understanding of interfacial thermal transport physics and have impact on engineering thermal boundary conductance at interfaces in applications such as electronics thermal management and thermoelectric energy conversion.
Conventional theories for interfacial thermal transport are derived from bulk phonon properties. Here, the authors report experimental observation of interfacial phonon modes localized at interfaces, changing how interfacial thermal transport should be understood.
Journal Article
Low-dose phase retrieval of biological specimens using cryo-electron ptychography
2020
Cryo-electron microscopy is an essential tool for high-resolution structural studies of biological systems. This method relies on the use of phase contrast imaging at high defocus to improve information transfer at low spatial frequencies at the expense of higher spatial frequencies. Here we demonstrate that electron ptychography can recover the phase of the specimen with continuous information transfer across a wide range of the spatial frequency spectrum, with improved transfer at lower spatial frequencies, and as such is more efficient for phase recovery than conventional phase contrast imaging. We further show that the method can be used to study frozen-hydrated specimens of rotavirus double-layered particles and HIV-1 virus-like particles under low-dose conditions (5.7 e/Å
2
) and heterogeneous objects in an Adenovirus-infected cell over large fields of view (1.14 × 1.14 μm), thus making it suitable for studies of many biologically important structures.
Cryo-electron microscopy is widely employed in structural biology and uses phase contrast imaging. Here, the authors employ electron ptychography, a quantitative phase retrieval method for high-contrast, low-dose phase imaging of cryo-state rotavirus and immature HIV-1 virus-like particles, and show that electron ptychography is more efficient for phase recovery than conventional phase contrast imaging.
Journal Article
Elastic strain engineering of ferroic oxides
by
Fennie, Craig J.
,
Pan, Xiaoqing
,
Gopalan, Venkatraman
in
Applied and Technical Physics
,
Characterization and Evaluation of Materials
,
Elastic constants
2014
Using epitaxy and the misfit strain imposed by an underlying substrate, it is possible to elastically strain oxide thin films to percent levels—far beyond where they would crack in bulk. Under such strains, the properties of oxides can be dramatically altered. In this article, we review the use of elastic strain to enhance ferroics, materials containing domains that can be moved through the application of an electric field (ferroelectric), a magnetic field (ferromagnetic), or stress (ferroelastic). We describe examples of transmuting oxides that are neither ferroelectric nor ferromagnetic in their unstrained state into ferroelectrics, ferromagnets, or materials that are both at the same time (multiferroics). Elastic strain can also be used to enhance the properties of known ferroic oxides or to create new tunable microwave dielectrics with performance that rivals that of existing materials. Results show that for thin films of ferroic oxides, elastic strain is a viable alternative to the traditional method of chemical substitution to lower the energy of a desired ground state relative to that of competing ground states to create materials with superior properties.
Journal Article