Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Panagiotaropoulos, Theofanis I."
Sort by:
Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports
A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated with post-perceptual processes associated with reporting the contents of consciousness or feedforward signals originating from exogenous stimulus manipulations and relayed via posterior cortical areas. We addressed this debate by simultaneously probing neuronal populations in the rhesus macaque (Macaca mulatta) PFC during a no-report paradigm, capable of instigating internally generated transitions in conscious perception, without changes in visual stimulation. We find that feature-selective prefrontal neurons are modulated concomitantly with subjective perception and perceptual suppression of their preferred stimulus during both externally induced and internally generated changes in conscious perception. Importantly, this enables reliable single-trial, population decoding of conscious contents. Control experiments confirm significant decoding of stimulus contents, even when oculomotor responses, used for inferring perception, are suppressed. These findings suggest that internally generated changes in the contents of conscious visual perception are reliably reflected within the activity of prefrontal populations in the absence of volitional reports or changes in sensory input. The role of the prefrontal cortex in conscious perception is debated because of its involvement in task relevant behaviour, such as subjective perceptual reports. Here, the authors show that prefrontal activity in rhesus macaques correlates with subjective perception and the contents of consciousness can be decoded from prefrontal population activity even without reports.
An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory
The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories’ proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.
Uncovering the organization of neural circuits with Generalized Phase Locking Analysis
Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes.
Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing
Abstract The role of the primate prefrontal cortex (PFC) in conscious perception is debated. The global neuronal workspace theory of consciousness predicts that PFC neurons should contain a detailed code of the current conscious contents. Previous research showed that PFC is indeed activated in paradigms of conscious visual perception, including no-report paradigms where no voluntary behavioral report of the percept is given, thus avoiding a conflation of signals related to visual consciousness with signals related to the report. Still, it has been argued that prefrontal modulation could reflect post-perceptual processes that may be present even in the absence of report, such as thinking about the perceived stimulus, therefore reflecting a consequence rather than a direct correlate of conscious experience. Here, we investigate these issues by recording neuronal ensemble activity from the macaque ventrolateral PFC during briefly presented visual stimuli, either in isolated trials in which stimuli were clearly perceived or in sequences of rapid serial visual presentation (RSVP) in which perception and post-perceptual processing were challenged. We report that the identity of each stimulus could be decoded from PFC population activity even in the RSVP condition. The first visual signals could be detected at 60 ms after stimulus onset and information was maximal at 150 ms. However, in the RSVP condition, 200 ms after the onset of a stimulus, the decoding accuracy quickly dropped to chance level and the next stimulus started to be decodable. Interestingly, decoding in the ventrolateral PFC was stronger compared to posterior parietal cortex for both isolated and RSVP stimuli. These results indicate that neuronal populations in the macaque PFC reliably encode visual stimuli even under conditions that have been shown to challenge conscious perception and/or substantially reduce the probability of post-perceptual processing in humans. We discuss whether the observed activation reflects conscious access, phenomenal consciousness, or merely a preconscious bottom-up wave.
A Common Neurodynamical Mechanism Could Mediate Externally Induced and Intrinsically Generated Transitions in Visual Awareness
The neural correlates of conscious visual perception are commonly studied in paradigms of perceptual multistability that allow multiple perceptual interpretations during unchanged sensory stimulation. What is the source of this multistability in the content of perception? From a theoretical perspective, a fine balance between deterministic and stochastic forces has been suggested to underlie the spontaneous, intrinsically driven perceptual transitions observed during multistable perception. Deterministic forces are represented by adaptation of feature-selective neuronal populations encoding the competing percepts while stochastic forces are modeled as noise-driven processes. Here, we used a unified neuronal competition model to study the dynamics of adaptation and noise processes in binocular flash suppression (BFS), a form of externally induced perceptual suppression, and compare it with the dynamics of intrinsically driven alternations in binocular rivalry (BR). For the first time, we use electrophysiological, biologically relevant data to constrain a model of perceptual rivalry. Specifically, we show that the mean population discharge pattern of a perceptually modulated neuronal population detected in electrophysiological recordings in the lateral prefrontal cortex (LPFC) during BFS, constrains the dynamical range of externally induced perceptual transitions to a region around the bifurcation separating a noise-driven attractor regime from an adaptation-driven oscillatory regime. Most interestingly, the dynamical range of intrinsically driven perceptual transitions during BR is located in the noise-driven attractor regime, where it overlaps with BFS. Our results suggest that the neurodynamical mechanisms of externally induced and spontaneously generated perceptual alternations overlap in a narrow, noise-driven region just before a bifurcation where the system becomes adaptation-driven.
Introduction to Research Topic – Binocular Rivalry: A Gateway to Studying Consciousness
Additionally, this collection includes research articles using psychophysical, computational, developmental, and imaging techniques that address fundamental questions related to the nature, origins, and neural implications of binocular rivalry. Introducing a novel computational model based on a non-linear algorithm, Lehky (2011) suggests that – at least theoretically – each eye’s view can be extracted following binocular integration at later processing stages of the visual system, which could explain some apparent conflicts between previous psychophysical and neurophysiological results. Paffen and Alais (2011) add to the discussion of high-level influences during binocular rivalry by reviewing the most recent literature on attentional influences on perceptual alternations, concluding that high-level selection processes can influence, but are not required to explain the temporal dynamics of binocular rivalry. Dieter and Tadin (2011) provide a complementary review of the interaction between selective attention and binocular rivalry, and place the results in a unifying framework that is based on the classic biased competition model (Desimone and Duncan, 1995).
Subjective visual perception: from local processing to emergent phenomena of brain activity
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.
Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition
Perceptual bistability arises when two conflicting interpretations of an ambiguous stimulus or images in binocular rivalry (BR) compete for perceptual dominance. From a computational point of view, competition models based on cross-inhibition and adaptation have shown that noise is a crucial force for rivalry, and operates in balance with adaptation. In particular, noise-driven transitions and adaptation-driven oscillations define two dynamical regimes and the system explains the observed alternations in perception when it operates near their boundary. In order to gain insights into the microcircuit dynamics mediating spontaneous perceptual alternations, we used a reduced recurrent attractor-based biophysically realistic spiking network, well known for working memory, attention, and decision making, where a spike-frequency adaptation mechanism is implemented to account for perceptual bistability. We thus derived a consistently reduced four-variable population rate model using mean-field techniques, and we tested it on BR data collected from human subjects. Our model accounts for experimental data parameters such as mean time dominance, coefficient of variation, and gamma distribution fit. In addition, we show that our model operates near the bifurcation that separates the noise-driven transitions regime from the adaptation-driven oscillations regime, and agrees with Levelt's second revised and fourth propositions. These results demonstrate for the first time that a consistent reduction of a biophysically realistic spiking network of leaky integrate-and-fire neurons with spike-frequency adaptation could account for BR. Moreover, we demonstrate that BR can be explained only through the dynamics of competing neuronal pools, without taking into account the adaptation of inhibitory interneurons. However, the adaptation of interneurons affects the optimal parametric space of the system by decreasing the overall adaptation necessary for the bifurcation to occur, and introduces oscillations in the spontaneous state.
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex
The role of lateral prefrontal cortex (LPFC) in mediating conscious perception has been recently questioned due to potential confounds resulting from the parallel operation of task related processes. We have previously demonstrated encoding of contents of visual consciousness in LPFC neurons during a no-report task involving perceptual suppression. Here, we report a separate LPFC population that exhibits task-phase related activity during the same task. The activity profile of these neurons could be captured as canonical response patterns (CRPs), with their peak amplitudes sequentially distributed across different task phases. Perceptually suppressed visual input had a negligible impact on sequential firing and functional connectivity structure. Importantly, task-phase related neurons were functionally segregated from the neuronal population, which encoded conscious perception. These results suggest that neurons exhibiting task-phase related activity operate in the LPFC concurrently with, but segregated from neurons representing conscious content during a no-report task involving perceptual suppression. Vishal Kapoor et al. identify a population of cells in the lateral prefrontal cortex that exhibits task phase-related activity during a no-report task. This cell population is functionally segregated from the population encoding conscious perception, although the two operate in parallel.