Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
42
result(s) for
"Panisson, André"
Sort by:
Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach
by
Cattuto, Ciro
,
Gauvin, Laetitia
,
Panisson, André
in
Activity patterns
,
Algorithms
,
Artificial intelligence
2014
The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule.
Journal Article
Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers
2015
Empirical data on contacts between individuals in social contexts play an important role in providing information for models describing human behavior and how epidemics spread in populations. Here, we analyze data on face-to-face contacts collected in an office building. The statistical properties of contacts are similar to other social situations, but important differences are observed in the contact network structure. In particular, the contact network is strongly shaped by the organization of the offices in departments, which has consequences in the design of accurate agent-based models of epidemic spread. We consider the contact network as a potential substrate for infectious disease spread and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we define three typical behaviors according to the fraction f of links each individual shares outside its own department: residents, wanderers, and linkers. Linkers (f ~ 50%) act as bridges in the network and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently prevents large outbreaks. As such a behavior may be spotted a priori in the offices' organization or from surveys, without the full knowledge of the time-resolved contact network, this result may help the design of efficient, low-cost vaccination or social-distancing strategies.
Journal Article
Time-varying graph representation learning via higher-order skip-gram with negative sampling
by
Piaggesi, Simone
,
Panisson, André
in
Algorithms
,
Complexity
,
Computer Appl. in Social and Behavioral Sciences
2022
Representation learning models for graphs are a successful family of techniques that project nodes into feature spaces that can be exploited by other machine learning algorithms. Since many real-world networks are inherently dynamic, with interactions among nodes changing over time, these techniques can be defined both for static and for time-varying graphs. Here, we show how the skip-gram embedding approach can be generalized to perform implicit tensor factorization on different tensor representations of time-varying graphs. We show that higher-order skip-gram with negative sampling (HOSGNS) is able to disentangle the role of nodes and time, with a small fraction of the number of parameters needed by other approaches. We empirically evaluate our approach using time-resolved face-to-face proximity data, showing that the learned representations outperform state-of-the-art methods when used to solve downstream tasks such as network reconstruction. Good performance on predicting the outcome of dynamical processes such as disease spreading shows the potential of this method to estimate contagion risk, providing early risk awareness based on contact tracing data.
Journal Article
Activity clocks: spreading dynamics on temporal networks of human contact
by
Barrat, Alain
,
Cattuto, Ciro
,
Gauvin, Laetitia
in
639/766/530/2801
,
639/766/530/2804
,
Adaptation and Self-Organizing Systems
2013
Dynamical processes on time-varying complex networks are key to understanding and modeling a broad variety of processes in socio-technical systems. Here we focus on empirical temporal networks of human proximity and we aim at understanding the factors that, in simulation, shape the arrival time distribution of simple spreading processes. Abandoning the notion of wall-clock time in favour of node-specific clocks based on activity exposes robust statistical patterns in the arrival times across different social contexts. Using randomization strategies and generative models constrained by data, we show that these patterns can be understood in terms of heterogeneous inter-event time distributions coupled with heterogeneous numbers of events per edge. We also show, both empirically and by using a synthetic dataset, that significant deviations from the above behavior can be caused by the presence of edge classes with strong activity correlations.
Journal Article
Predicting human mobility through the assimilation of social media traces into mobility models
2016
Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.
Journal Article
The impact of news exposure on collective attention in the United States during the 2016 Zika epidemic
by
Cattuto, Ciro
,
Paolotti, Daniela
,
Tizzoni, Michele
in
Analysis
,
Archives & records
,
Biology and life sciences
2020
In recent years, many studies have drawn attention to the important role of collective awareness and human behaviour during epidemic outbreaks. A number of modelling efforts have investigated the interaction between the disease transmission dynamics and human behaviour change mediated by news coverage and by information spreading in the population. Yet, given the scarcity of data on public awareness during an epidemic, few studies have relied on empirical data. Here, we use fine-grained, geo-referenced data from three online sources-Wikipedia, the GDELT Project and the Internet Archive-to quantify population-scale information seeking about the 2016 Zika virus epidemic in the U.S., explicitly linking such behavioural signal to epidemiological data. Geo-localized Wikipedia pageview data reveal that visiting patterns of Zika-related pages in Wikipedia were highly synchronized across the United States and largely explained by exposure to national television broadcast. Contrary to the assumption of some theoretical epidemic models, news volume and Wikipedia visiting patterns were not significantly correlated with the magnitude or the extent of the epidemic. Attention to Zika, in terms of Zika-related Wikipedia pageviews, was high at the beginning of the outbreak, when public health agencies raised an international alert and triggered media coverage, but subsequently exhibited an activity profile that suggests nonlinear dependencies and memory effects in the relation between information seeking, media pressure, and disease dynamics. This calls for a new and more general modelling framework to describe the interaction between media exposure, public awareness and disease dynamics during epidemic outbreaks.
Journal Article
Collective Response to Media Coverage of the COVID-19 Pandemic on Reddit and Wikipedia: Mixed-Methods Analysis
2020
The exposure and consumption of information during epidemic outbreaks may alter people's risk perception and trigger behavioral changes, which can ultimately affect the evolution of the disease. It is thus of utmost importance to map the dissemination of information by mainstream media outlets and the public response to this information. However, our understanding of this exposure-response dynamic during the COVID-19 pandemic is still limited.
The goal of this study is to characterize the media coverage and collective internet response to the COVID-19 pandemic in four countries: Italy, the United Kingdom, the United States, and Canada.
We collected a heterogeneous data set including 227,768 web-based news articles and 13,448 YouTube videos published by mainstream media outlets, 107,898 user posts and 3,829,309 comments on the social media platform Reddit, and 278,456,892 views of COVID-19-related Wikipedia pages. To analyze the relationship between media coverage, epidemic progression, and users' collective web-based response, we considered a linear regression model that predicts the public response for each country given the amount of news exposure. We also applied topic modelling to the data set using nonnegative matrix factorization.
Our results show that public attention, quantified as user activity on Reddit and active searches on Wikipedia pages, is mainly driven by media coverage; meanwhile, this activity declines rapidly while news exposure and COVID-19 incidence remain high. Furthermore, using an unsupervised, dynamic topic modeling approach, we show that while the levels of attention dedicated to different topics by media outlets and internet users are in good accordance, interesting deviations emerge in their temporal patterns.
Overall, our findings offer an additional key to interpret public perception and response to the current global health emergency and raise questions about the effects of attention saturation on people's collective awareness and risk perception and thus on their tendencies toward behavioral change.
Journal Article
Revealing the determinants of gender inequality in urban cycling with large-scale data
by
Napoli, Ludovico
,
Szell, Michael
,
Schifanella, Rossano
in
Bicycling
,
Complexity
,
Computer Appl. in Social and Behavioral Sciences
2023
Cycling is an outdoor activity with massive health benefits, and an effective solution for sustainable urban transport. Despite these benefits and the recent rising popularity of cycling, most countries still have a negligible uptake. This uptake is especially low for women: there is a largely unexplained, persistent gender gap in cycling. To understand the determinants of this gender gap in cycling at scale, here we use massive, automatically-collected data from the tracking application Strava on outdoor cycling for 61 cities across the United States, the United Kingdom, Italy and the Benelux area. While Strava data is particularly well-suited to describe the behavior of regular cyclists and its generalizability to occasional cyclists requires further investigation, the size of these data and their characteristics represent an unprecedented opportunity for the literature on cycling. Leveraging the associated gender and usage information, we first quantify the emerging gender gap in recreational cycling at city-level. A comparison of cycling rates of women across cities within similar geographical areas—where the penetration of Strava is assumed to be comparable—unveils a broad range of gender gaps. On a macroscopic level, we link this heterogeneity to a variety of urban indicators and provide evidence for traditional hypotheses on the determinants of the gender-cycling-gap. We find a positive association between female cycling rate and urban road safety. On a microscopic level, we identify female preferences for street-specific features in the city of New York. Assuming that the determinants of the gender-cycling-gap are similar across regular and occasional cyclists, our study suggests that enhancing the quality of the dedicated cycling infrastructure may be a way to make urban environments more accessible for women, thereby making urban transport more sustainable for everyone.
Journal Article
Global Misinformation Spillovers in the Vaccination Debate Before and During the COVID-19 Pandemic: Multilingual Twitter Study
by
Lenti, Jacopo
,
Kalimeri, Kyriaki
,
Paolotti, Daniela
in
Application programming interface
,
COVID-19 vaccines
,
Credibility
2023
Antivaccination views pervade online social media, fueling distrust in scientific expertise and increasing the number of vaccine-hesitant individuals. Although previous studies focused on specific countries, the COVID-19 pandemic has brought the vaccination discourse worldwide, underpinning the need to tackle low-credible information flows on a global scale to design effective countermeasures.
This study aimed to quantify cross-border misinformation flows among users exposed to antivaccination (no-vax) content and the effects of content moderation on vaccine-related misinformation.
We collected 316 million vaccine-related Twitter (Twitter, Inc) messages in 18 languages from October 2019 to March 2021. We geolocated users in 28 different countries and reconstructed a retweet network and cosharing network for each country. We identified communities of users exposed to no-vax content by detecting communities in the retweet network via hierarchical clustering and manual annotation. We collected a list of low-credibility domains and quantified the interactions and misinformation flows among no-vax communities of different countries.
The findings showed that during the pandemic, no-vax communities became more central in the country-specific debates and their cross-border connections strengthened, revealing a global Twitter antivaccination network. US users are central in this network, whereas Russian users also became net exporters of misinformation during vaccination rollout. Interestingly, we found that Twitter's content moderation efforts, in particular the suspension of users following the January 6 US Capitol attack, had a worldwide impact in reducing the spread of misinformation about vaccines.
These findings may help public health institutions and social media platforms mitigate the spread of health-related, low-credibility information by revealing vulnerable web-based communities.
Journal Article
Quantifying social contacts in a household setting of rural Kenya using wearable proximity sensors
2016
Close proximity interactions between individuals influence how infections spread. Quantifying close contacts in developing world settings, where such data is sparse yet disease burden is high, can provide insights into the design of intervention strategies such as vaccination. Recent technological advances have enabled collection of time-resolved face-to-face human contact data using radio frequency proximity sensors. The acceptability and practicalities of using proximity devices within the developing country setting have not been investigated.
We present and analyse data arising from a prospective study of 5 households in rural Kenya, followed through 3 consecutive days. Pre-study focus group discussions with key community groups were held. All residents of selected households carried wearable proximity sensors to collect data on their close (<1.5 metres) interactions. Data collection for residents of three of the 5 households was contemporaneous. Contact matrices and temporal networks for 75 individuals are defined and mixing patterns by age and time of day in household contacts determined. Our study demonstrates the stability of numbers and durations of contacts across days. The contact durations followed a broad distribution consistent with data from other settings. Contacts within households occur mainly among children and between children and adults, and are characterised by daily regular peaks in the morning, midday and evening. Inter-household contacts are between adults and more sporadic when measured over several days. Community feedback indicated privacy as a major concern especially regarding perceptions of non-participants, and that community acceptability required thorough explanation of study tools and procedures.
Our results show for a low resource setting how wearable proximity sensors can be used to objectively collect high-resolution temporal data without direct supervision. The methodology appears acceptable in this population following adequate community engagement on study procedures. A target for future investigation is to determine the difference in contact networks within versus between households. We suggest that the results from this study may be used in the design of future studies using similar electronic devices targeting communities, including households and schools, in the developing world context.
Journal Article