Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
3
result(s) for
"Pannecoucke, Erwin"
Sort by:
Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms
2019
Histiocytoses are clonal hematopoietic disorders frequently driven by mutations mapping to the BRAF and MEK1 and MEK2 kinases. Currently, however, the developmental origins of histiocytoses in patients are not well understood, and clinically meaningful therapeutic targets outside of BRAF and MEK are undefined. In this study, we uncovered activating mutations in CSF1R and rearrangements in RET and ALK that conferred dramatic responses to selective inhibition of RET (selpercatinib) and crizotinib, respectively, in patients with histiocytosis.
Journal Article
The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement
2022
Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.
Disrupting the association between the Immunoglobulin G constant fragment (Fc) and the neonatal Fc receptor (FcRn) by engineered antibodies is a promising strategy to reduce autoantibody levels in autoimmune diseases. Here authors show that the variable fragment (Fab) of immunoglobulins could disturb the Fc-FcRn interaction, therefore the therapeutic effect of Fc-only fragments might surpass that of Fc-engineered antibodies with enhanced binding to FcRn.
Journal Article
Randomized phase I trial outcomes show safe and sustainable inhibition of classical and lectin complement pathways by empasiprubart
by
Andersen, Gregers Rom
,
Bracke, Laura
,
Gandini, Domenica
in
631/154
,
631/250/2501
,
631/250/256
2025
Activation of classical and lectin complement pathways contributes to several human diseases. Empasiprubart is a humanized recycling monoclonal antibody that inhibits both pathways by binding to the CCP2 domain of complement factor 2 (C2), an interaction that is dependent on both Ca
2+
and pH. Here, we resolve the crystal structure of empasiprubart complexed with C2, providing the molecular basis of its Ca
2+
dependency, and report a randomized, double-blind, placebo-controlled trial to assess the safety and tolerability (primary objectives) in addition to pharmacokinetics, pharmacodynamics, and immunogenicity (secondary objectives) of empasiprubart in 78 healthy participants (NCT04532125). A single intravenous (IV) dose of empasiprubart reduces circulating C2 levels by up to 99% and dose-dependently inhibits the classical and lectin pathways. Multiple IV empasiprubart doses reinforce reductions in free C2 levels, which persist until the endpoint of the study at 41 weeks. This prolonged reduction is in line with the empasiprubart elimination half-life (70–88 days). Single and multiple ascending doses of empasiprubart are generally safe and well tolerated. Overall, our results reveal in atomic detail the mechanism of empasiprubart and demonstrate that it is a first-in-class anti-C2 therapeutic antibody for use in complement-mediated diseases.
Though the complement system is pivotal in the defence against infections, pathologic activation of the system contributes to disease. Here, authors show that their recently developed monoclonal antibody against complement factor 2, empasiprubart, inhibits the classical and lectin pathways in a clinical trial, and its crystal structure provides basis for its inhibitory properties, such as Ca
2+
binding.
Journal Article