Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Paolesse, Roberto"
Sort by:
Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors
by
Paolesse, Roberto
,
Bayat, Mansour
,
Rohani Bastami, Tahereh
in
Acoustics
,
Aqueous solutions
,
Au@Ag NPs
2022
In this study, we report a novel and facile colorimetric assay based on silver citrate-coated Au@Ag nanoparticles (Au@AgNPs) as a chemosensor for the naked-eye detection of morphine (MOR). The developed optical sensing approach relied on the aggregation of Au@Ag NPs upon exposure to morphine, which led to an evident color variation from light-yellow to brown. Au@Ag NPs have been prepared by two different protocols, using high- and low-power ultrasonic irradiation. The sonochemical method was essential for the sensing properties of the resulting nanoparticles. This facile sensing method has several advantages including excellent stability, selectivity, prompt detection, and cost-effectiveness.
Journal Article
Recent Advances in Chemical Sensors for Soil Analysis: A Review
2022
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Journal Article
Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring
by
Paolesse, Roberto
,
Stefanelli, Manuela
,
Martini, Roberto
in
Biosensors
,
chemical sensors
,
Chemicals
2022
Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.
Journal Article
Ammonia and Humidity Sensing by Phthalocyanine–Corrole Complex Heterostructure Devices
by
Meunier-Prest, Rita
,
Paolesse, Roberto
,
Lesniewska, Eric
in
Ammonia
,
Analytical chemistry
,
Chemical Sciences
2023
The versatility of metal complexes of corroles has raised interest in the use of these molecules as elements of chemical sensors. The tuning of the macrocycle properties via synthetic modification of the different components of the corrole ring, such as functional groups, the molecular skeleton, and coordinated metal, allows for the creation of a vast library of corrole-based sensors. However, the scarce conductivity of most of the aggregates of corroles limits the development of simple conductometric sensors and requires the use of optical or mass transducers that are rather more cumbersome and less prone to be integrated into microelectronics systems. To compensate for the scarce conductivity, corroles are often used to functionalize the surface of conductive materials such as graphene oxide, carbon nanotubes, or conductive polymers. Alternatively, they can be incorporated into heterojunction devices where they are interfaced with a conductive material such as a phthalocyanine. Herewith, we introduce two heterostructure sensors combining lutetium bisphthalocyanine (LuPc2) with either 5,10,15-tris(pentafluorophenyl) corrolato Cu (1) or 5,10,15-tris(4-methoxyphenyl)corrolato Cu (2). The optical spectra show that after deposition, corroles maintain their original structure. The conductivity of the devices reveals an energy barrier for interfacial charge transport for 1/LuPc2, which is a heterojunction device. On the contrary, only ohmic contacts are observed in the 2/LuPc2 device. These different electrical properties, which result from the different electron-withdrawing or -donating substituents on corrole rings, are also manifested by the opposite response with respect to ammonia (NH3), with 1/LuPc2 behaving as an n-type conductor and 2/LuPC2 behaving as a p-type conductor. Both devices are capable of detecting NH3 down to 10 ppm at room temperature. Furthermore, the sensors show high sensitivity with respect to relative humidity (RH) but with a reversible and fast response in the range of 30–60% RH.
Journal Article
Supramolecular Chirogenesis in Porphyrin-Based Systems: Chirality Transfer from Anionic Chiral Surfactants to Cationic, Achiral Porphyrins
by
Paolesse, Roberto
,
Venanzi, Mariano
,
Stefanelli, Manuela
in
Aggregates
,
Anions - chemistry
,
Catalysis
2025
The chirality transfer from chiral domains to achiral molecules is an important theoretical and applicative issue. In this work, we have investigated the interaction between two anionic chiral surfactants bearing a proline residue as hydrophilic head and the cationic, achiral porphyrin Zn(II) [5-4-(3-trimethylammonium)propyloxyphenyl-10,15,20-triphenylporphyrinyl]chloride to assess the effects of the structural variations in both units on the chirality transfer efficiency and amplification. We showed that the efficiency of transferring molecular information depends on the surfactant’s features, namely the chiral configuration of the polar head, the length of the aliphatic chain, and the aggregation state. At the same time, the presence of a coordinated metal and the peripheral charged group on the porphyrin macrocycle are key factors. In detail, the study of the hetero-aggregates formed at a surfactant concentration below the critical micellar concentration (cmc) indicates that the chirality depends on the synergy of hydrophobic effect, coordination interaction, and electrostatic forces. If the surfactant concentration is higher than the cmc, at a low concentration, porphyrins are included in micelles as monomers. Under these conditions, no chirality transfer is evident. When the porphyrin is in excess with respect to the micelles, an efficient asymmetry induction is again observed, transmitted from the chiral polar head to the porphyrin oligomers included in the micelle, through the polar heads and the hydrocarbon chains of the surfactants.
Journal Article
The Self-Aggregation of Porphyrins with Multiple Chiral Centers in Organic/Aqueous Media: The Case of Sugar- and Steroid-Porphyrin Conjugates
by
Paolesse, Roberto
,
Venanzi, Mariano
,
Stefanelli, Manuela
in
chirality
,
circular dichroism
,
Investigations
2020
An overview of the solvent-driven aggregation of a series of chiral porphyrin derivatives studied by optical methods (UV/Vis, fluorescence, CD and RLS spectroscopies) is herein reported. The investigated porphyrins are characterized by the presence in the meso-positions of glycol-, steroidal- and glucosteroidal moieties, conferring amphiphilicity and solubility in aqueous media to the primarily hydrophobic porphyrin platform. Aggregation of the macrocycles is driven by a change in bulk solvent composition, forming architectures with supramolecular chirality, steered by the stereogenic centers on the porphyrin peripheral positions. The aggregation behavior and chiroptical properties of the final aggregated species strongly depend on the number and stereogenicity of the ancillary groups that dictate the mutual spatial arrangement of the porphyrin chromophores and their further organization in larger structures, usually detectable by different microscopies, such as AFM and SEM. Kinetic studies are fundamental to understand the aggregation mechanism, which is frequently found to be dependent on the substrate concentration. Additionally, Molecular Mechanics calculations can give insights into the intimate nature of the driving forces governing the self-assembly process. The critical use of these combined methods can shed light on the overall self-assembly process of chirally-functionalized macrocycles, with important implications on the development of chiral porphyrin-based materials.
Journal Article
The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs
2015
Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.
Journal Article
The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement
by
Paolesse, Roberto
,
Natale, Corrado Di
,
Lvova, Larisa
in
co-porphyrin ligand
,
J-type porphyrin aggregation
,
nitrite sensing
2021
The metalloporphyrin ligand bearing incorporated anion-exchanger fragment, 5-[4-(3-trimethylammonium)propyloxyphenyl]-10,15,20-triphenylporphyrinate of Co(II) chloride, CoTPP-N, has been tested as anion-selective ionophore in PVC-based solvent polymeric membrane sensors. A plausible sensor working mechanism includes the axial coordination of the target anion on ionophore metal center followed by the formed complex aggregation with the second ionophore molecule through positively charged anion-exchanger fragment. The UV-visible spectroscopic studies in solution have revealed that the analyte concentration increase induces the J-type porphyrin aggregation. Polymeric membranes doped with CoTPP-N showed close to the theoretical Nernstian response toward nitrite ion, preferably coordinated by the ionophore, and were dependent on the presence of additional membrane-active components (lipophilic ionic sites and ionophore) in the membrane phase. The resulting selectivity was a subject of specific interaction and/or steric factors. Moreover, it was demonstrated theoretically and confirmed experimentally that the selection of a proper ratio of ionophore and anionic additive can optimize the sensor selectivity and lifetime.
Journal Article
Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation
by
Paolesse, Roberto
,
Kirsanov, Dmitry
,
Legin, Andrey
in
Alcohol
,
defect compounds analysis
,
potentiometric e-Tongue
2018
The potentiometric electronic tongue system has been tested as a potential analytical tool for brand uniformity control of monoculture Apulian red wines (Primitivo and Negroamaro). The sensor array was composed of eight porphyrin coatings obtained by electrochemical polymerization process and was employed for both wines discrimination and quantitative detection of wine defect compounds: “off-odour” 3-(methylthio)-propanol; isoamyl alcohol fusel oil; benzaldehyde (marker of the yeast activity) and acetic acid (marker of vinegar formation). PLS-DA applied to Electronic tongue output data has permitted a correct discrimination of more than 70% of analysed wines in respect to the original brand affiliation. Satisfactory PLS1 predictions were obtained in real wine samples; with R2 = 0.989 for isoamyl alcohol and R2 = 0.732 for acetic acid. Moreover; the possibility to distinguish wine samples on the base of permitted levels of fault compounds content was shown.
Journal Article
Keeping Track of Phaeodactylum tricornutum (Bacillariophyta) Culture Contamination by Potentiometric E-Tongue
2021
The large-scale cultivation of microalgae provides a wide spectrum of marketable bioproducts, profitably used in many fields, from the preparation of functional health products and feed supplement in aquaculture and animal husbandry to biofuels and green chemistry agents. The commercially successful algal biomass production requires effective strategies to maintain the process at desired productivity and stability levels. Hence, the development of effective early warning methods to timely indicate remedial actions and to undertake countermeasures is extremely important to avoid culture collapse and consequent economic losses. With the aim to develop an early warning method of algal contamination, the potentiometric E-tongue was applied to record the variations in the culture environments, over the whole growth process, of two unialgal cultures, Phaeodactylum tricornutum and a microalgal contaminant, along with those of their mixed culture. The E-tongue system ability to distinguish the cultures and to predict their growth stage, through the application of multivariate data analysis, was shown. A PLS regression method applied to the E-tongue output data allowed a good prediction of culture growth time, expressed as growth days, with R2 values in a range from 0.913 to 0.960 and RMSEP of 1.97–2.38 days. Moreover, the SIMCA and PLS-DA techniques were useful for cultures contamination monitoring. The constructed PLS-DA model properly discriminated 67% of cultures through the analysis of their growth media, i.e., environments, thus proving the potential of the E-tongue system for a real time monitoring of contamination in microalgal intensive cultivation.
Journal Article