Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Parasuraman, Ganesh"
Sort by:
Human fetal cartilage-derived chondrocytes and chondroprogenitors display a greater commitment to chondrogenesis than adult cartilage resident cells
Obtaining regeneration-competent cells and generating high-quality neocartilage are still challenges in articular cartilage tissue engineering. Although chondroprogenitor cells are a resident subpopulation of native cartilage and possess a high capacity for proliferation and cartilage formation, their potential for regenerative medicine has not been adequately explored. Fetal cartilage, another potential source with greater cellularity and a higher cell-matrix ratio than adult tissue, has been evaluated for sourcing cells to treat articular disorders. This study aimed to compare cartilage resident cells, namely chondrocytes, fibronectin adhesion assay-derived chondroprogenitors (FAA-CPCs) and migratory chondroprogenitors (MCPs) isolated from fetal and adult cartilage, to evaluate differences in their biological properties and their potential for cartilage repair. Following informed consent, three human fetal and three adult osteoarthritic knee joints were used to harvest the cartilage samples, from which the three cell types a) chondrocytes, b) FAA-CPCs, and MCPs were isolated. Assessment parameters consisted of flow cytometry analysis for percentage expression of cell surface markers, population doubling time and cell cycle analyses, qRT-PCR for markers of chondrogenesis and hypertrophy, trilineage differentiation potential and biochemical analysis of differentiated chondrogenic pellets for total GAG/DNA content. Compared to their adult counterparts, fetal cartilage-derived cells displayed significantly lower CD106 and higher levels of CD146 expression, indicative of their superior chondrogenic capacity. Moreover, all fetal groups demonstrated significantly higher levels of GAG/DNA ratio with enhanced uptake of collagen type 2 and GAG stains on histology. It was also noted that fetal FAA CPCs had a greater proliferative ability with significantly higher levels of the primary transcription factor SOX-9. Fetal chondrocytes and chondroprogenitors displayed a superior propensity for chondrogenesis when compared to their adult counterparts. To understand their therapeutic potential and provide an important solution to long-standing challenges in cartilage tissue engineering, focused research into its regenerative properties using in-vivo models is warranted.
A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks
The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.
Lessons learnt in implementing a pilot community event-based surveillance system in Tiruvallur district, Tamil Nadu, India
We describe the process and experience of implementing a Community event-based Surveillance (CEBS) pilot project in one district in Tamil Nadu, India. The project was implemented by National Institute of Epidemiology (NIE) in collaboration with the Tamil Nadu State Public Health Department and US Centres for Disease Control and Prevention. The design and process of implementation of the pilot project was developed in collaboration with the Tamil Nadu State Public Health Department. Training materials and an SMS/phone call-based system was developed for community-level reporting. Data pertaining to signals, verified events and response were collected from April - December 2017 and February - December 2019. The frequency of reported signals, the proportion of verified events and the percentage/type of events responded by the health staff were computed. The stakeholders agreed on seven signals for detection of events. Three hundred health workers, 85 doctors and 8214 volunteers were trained. A total of 144 signals were reported of which the three most commonly reported signals were fever with rash (35%), clusters of similar illness (26%) and death of three or more animals or birds in one week (23%). Among the 25 events requiring action, 16 were not reported from existing surveillance systems. The current project demonstrated that CEBS can add value to the existing surveillance systems by engaging the communities to detect and report. Although the current pilot project was implemented in only one district, many important lessons were learnt including, the challenges that should be mitigated before expansion. The State Level leadership is actively exploring ways to strengthen a culture of reporting by initiating programmes that routinely and publicly acknowledge and appreciate reporters and to actively sensitise communities to reduce stigma of reporting.
Comparative assessment of satisfaction among outpatient department patients visiting secondary and tertiary level government hospitals of a district in Delhi
For comparative analysis and in the absence of the availability of similar studies in India, the sample size was calculated assuming the difference in percentage of patient satisfaction in the secondary and tertiary hospitals as 15%. Due to paucity of space in urban areas, the expansion of hospitals is often unplanned. [...]in multistoried buildings, without proper signboards it sometimes becomes difficult to locate the departments, even by educated people.
Comparative assessment of chondral defect repair using human bone marrow- and adipose tissue-derived mesenchymal stem cells, adult and foetal articular cartilage-derived chondrocytes, and chondroprogenitors: an ex-vivo model
Purpose Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model. Methods In-vitro characterization of the cells included growth kinetics, FACS, qRT-PCR, and multilineage differentiation potential using histology and GAG analysis. Ex-vivo human OCUs with chondral defects containing the different cells in PRP were cultured and subjected to analysis for matrix and collagen staining. Results The ex-vivo OCU analysis, in terms of defect repair, showed that adult chondrocytes, sorted-CPs, and foetal MCPs displayed better host integration and filling. The In-vitro analysis of adult chondrocytes displayed greater chondrogenic genes ACAN and COL2A1 expression, with sorted-CPs also showing higher levels of ACAN. In terms of accumulation of extracellular matrix uptake evident by Safranin O staining and collagen type II fibrillar uptake, the AD-MSCs, BM-MSCs, and sorted CPs outperformed the other groups. BM-MSCs also showed corroborative higher CD146 levels, however, the gene analysis of the AD-MSCs showed a high hypertrophic tendency in terms of its COL1A1 and RUNX2 expression. Conclusion Sorted chondroprogenitors outperformed both in terms of filling and hyaline-like repair, with AD-MSC and BM-MSC groups also achieving functional cartilage of a hyaline nature, warranting further evaluation using in-vivo and clinical studies.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio.
Human fetal cartilage-derived chondrocytes and chondroprogenitors display a greater commitment to chondrogenesis than adult cartilage resident cells
Obtaining regeneration-competent cells and generating high-quality neocartilage are still challenges in articular cartilage tissue engineering. Although chondroprogenitor cells are a resident subpopulation of native cartilage and possess a high capacity for proliferation and cartilage formation, their potential for regenerative medicine has not been adequately explored. Fetal cartilage, another potential source with greater cellularity and a higher cell-matrix ratio than adult tissue, has been evaluated for sourcing cells to treat articular disorders. This study aimed to compare cartilage resident cells, namely chondrocytes, fibronectin adhesion assay-derived chondroprogenitors (FAA-CPCs) and migratory chondroprogenitors (MCPs) isolated from fetal and adult cartilage, to evaluate differences in their biological properties and their potential for cartilage repair. Following informed consent, three human fetal and three adult osteoarthritic knee joints were used to harvest the cartilage samples, from which the three cell types a) chondrocytes, b) FAA-CPCs, and MCPs were isolated. Assessment parameters consisted of flow cytometry analysis for percentage expression of cell surface markers, population doubling time and cell cycle analyses, qRT-PCR for markers of chondrogenesis and hypertrophy, trilineage differentiation potential and biochemical analysis of differentiated chondrogenic pellets for total GAG/DNA content. Compared to their adult counterparts, fetal cartilage-derived cells displayed significantly lower CD106 and higher levels of CD146 expression, indicative of their superior chondrogenic capacity. Moreover, all fetal groups demonstrated significantly higher levels of GAG/DNA ratio with enhanced uptake of collagen type 2 and GAG stains on histology. It was also noted that fetal FAA CPCs had a greater proliferative ability with significantly higher levels of the primary transcription factor SOX-9. Fetal chondrocytes and chondroprogenitors displayed a superior propensity for chondrogenesis when compared to their adult counterparts. To understand their therapeutic potential and provide an important solution to long-standing challenges in cartilage tissue engineering, focused research into its regenerative properties using in-vivo models is warranted.
Experimental investigations of stability, density, thermal conductivity, and electrical conductivity of solar glycol-amine-functionalized graphene and MWCNT-based hybrid nanofluids
This research article discusses properties such as density, thermal conductivity, and electrical conductivity of solar glycol with amine-functionalized graphene and multi-walled carbon nanotubes (MWCNTs). The hybrid nanofluid is prepared by dispersing the amine-functionalized graphene (AFG) and MWCNTs (50:50 in % by weight ratio) in pure solar glycol. The AFG and MWCNTs are dispersed in different volume concentrations of 0.05%, 0.1%, and 0.15% through the classical two-step homogenizing technique. Good colloidal stability nanofluid are prepared with Gum Arabic (non-covalent) as the surfactant. The stability of nanofluids is ensured through scanning electron microscopy, UV-Vis spectrometer, and zeta potential analyzer. The nanofluid thermal conductivity is measured with varying the nanomaterial loading from 0.05 to 0.15 vol% using a KD2 pro thermal analyzer. The thermal conductivity and electrical conductivity of nanofluid augmentations are considerably with an increasing volume concentration of AFG and MWCNT loading. The thermal conductivity of the AFG–MWCNT-based hybrid nanofluid is augmented by 8.59% for the maximum concentration of 0.15 vol% at 50 °C. The electrical conductivity of the solar glycol-based nanofluids is enhanced linearly with increased operating temperatures. The maximum electrical conductivity enhancement attained is ~28.85% at a nanoparticle loading of 0.15 vol% and 70 °C.
A Case Series on Latissimus Dorsi Flap Reconstruction: A Versatile Approach to Managing Oncological Defects
The latissimus dorsi (LD) flap is a well-established reconstructive option, particularly for managing complex oncological defects. This study explores its versatility and efficacy through a retrospective case series involving five patients treated at a tertiary care center over five years. The cases included osteosarcoma of the humerus, melanoma of the plantar foot, recurrent fibromatosis of the neck, carcinoma of the breast, and osteosarcoma of the femur. All patients underwent surgical resection followed by LD flap reconstruction, either pedicled or microvascular, tailored to the defect's location and extent. Outcomes were assessed based on oncological control, postoperative complications, functional restoration, and esthetic results. The LD flap demonstrated excellent utility across all cases, with key findings including complete pathological response in two cases and no residual tumor in three cases. Functional outcomes were notable, with patients regaining weight-bearing capability or mobility within three months postoperatively. Partial flap necrosis occurred in one case but was managed conservatively with successful secondary healing. No recurrence was observed during follow-up for melanoma and breast cancer cases, highlighting favorable oncological outcomes. These findings reaffirm the LD flap's critical role in modern reconstructive surgery, offering robust soft tissue coverage, enhanced functional outcomes, and minimal complications. Further longitudinal studies are warranted to validate its long-term benefits and impact on quality of life.
Secondary attack rate of COVID-19 among contacts and risk factors, Tamil Nadu, March–May 2020: a retrospective cohort study
ObjectiveTo describe the characteristics of contacts of patients with COVID-19 case in terms of time, place and person, to calculate the secondary attack rate (SAR) and factors associated with COVID-19 infection among contacts.DesignA retrospective cohort studySetting and participantsContacts of cases identified by the health department from 14 March 2020to 30 May 2020, in 9 of 38 administrative districts of Tamil Nadu. Significant proportion of cases attended a religious congregation.Outcome measureAttack rate among the contacts and factors associated with COVID-19 positivity.ResultsWe listed 15 702 contacts of 931 primary cases. Of the contacts, 89% (n: 14 002) were tested for COVID-19. The overall SAR was 4% (599/14 002), with higher among the household contacts (13%) than the community contacts (1%). SAR among the contacts of primary cases with congregation exposure were 5 times higher than the contacts of non-congregation primary cases (10% vs 2%). Being a household contact of a primary case with congregation exposure had a fourfold increased risk of getting COVID-19 (relative risk (RR): 16.4; 95% CI: 13 to 20) than contact of primary case without congregation exposure. Among the symptomatic primary cases, household contacts of congregation primaries had higher RR than household contacts of other cases ((RR: 25.3; 95% CI: 10.2 to 63) vs (RR: 14.6; 95% CI: 5.7 to 37.7)). Among asymptomatic primary case, RR was increased among household contacts (RR: 16.5; 95% CI: 13.2 to 20.7) of congregation primaries compared with others.ConclusionOur study showed an increase in disease transmission among household contacts than community contacts. Also, symptomatic primary cases and primary cases with exposure to the congregation had more secondary cases than others.