Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Pariser, O."
Sort by:
Image and Data Processing for InSight Lander Operations and Science
The Instrument Site Selection and deployment for the upcoming Mars InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Lander is highly dependent on image products, particularly mosaics, created from the Instrument Deployment Camera (IDC) and Instrument Context Camera (ICC). When data are downlinked, the Multimission Image Processing Lab (MIPL) at JPL will process image and instrument data to aid in the deployment and monitoring of these instruments. MIPL’s functions include raw telemetry processing, stereo correlation, mosaic generation, terrain mesh generation, radiometric correction, pointing correction (bundle adjustment), and the creation of products such as instrument deployment maps, surface normal products, slope products, XYZ point clouds, and roughness map layers. A software pipeline performs systematic, automated execution of the programs that create these products on every image and stereo pair received, while the pointing correction and most mosaics are hand-generated by the MIPL team members for testing and surface operations. Several mission operations software packages are used to view, query, and analyze the processed images and mosaics for placing the main science instruments for the mission.
The survival benefit of adjuvant trastuzumab with or without chemotherapy in the management of small (T1mic, T1a, T1b, T1c), node negative HER2+ breast cancer
There is limited data regarding the added benefit of adjuvant systemic therapy in the management of small, node-negative, HER2+ breast cancer. In a multi-institutional retrospective analysis using the American Society of Clinical Oncology CancerLinQ database, we compared survival outcomes among T1a-c N0 HER2+ patients diagnosed between 2010 to 2021 who received locoregional therapy alone or in combination with adjuvant trastuzumab (+/− chemotherapy). Primary outcomes were invasive disease-free survival (iDFS) and overall survival (OS). Of the 1,184 patients, 436 received locoregional therapy alone. We found a statistically significant improvement in iDFS (HR 0.73, P = 0.003) and OS (HR 0.63, P = 0.023) on univariate analysis with adjuvant trastuzumab with or without chemotherapy which remained statistically significant on multivariate analysis. Three-arm univariate analysis found that iDFS was significantly improved with trastuzumab monotherapy (P = 0.003) and combination therapy (P = 0.027) compared to observation. Subgroup data suggests that T1b/c tumors derive the greatest benefit.
Protocol to assess the efficacy of carnosine supplementation in mitigating the adverse cardiovascular responses to particulate matter (PM) exposure: the Nucleophilic Defense Against PM Toxicity (NEAT) trial
IntroductionExposure to airborne particulate matter (PM) is associated with cardiovascular disease. These outcomes are believed to originate from pulmonary oxidative stress and the systemic delivery of oxidised biomolecules (eg, aldehydes) generated in the lungs. Carnosine is an endogenous di-peptide (β-alanine-L-histidine) which promotes physiological homeostasis in part by conjugating to and neutralising toxic aldehydes. We hypothesise that an increase of endogenous carnosine by dietary supplementation would mitigate the adverse cardiovascular outcomes associated with PM exposure in humans.Methods and analysisTo test this, we designed the Nucleophilic Defense Against PM Toxicity trial. This trial will enroll 240 participants over 2 years and determine if carnosine supplementation mitigates the adverse effects of PM inhalation. The participants will have low levels of endogenous carnosine to facilitate identification of supplementation-specific outcomes. At enrollment, we will measure several indices of inflammation, preclinical cardiovascular disease and physical function. Participants will be randomly allocated to carnosine or placebo groups and instructed to take their oral supplement for 12 weeks with two return clinical visits and repeated assessments during times of peak PM exposure (June–September) in Louisville, Kentucky, USA. Statistical modelling approaches will be used to assess the efficacy of carnosine supplementation in mitigating adverse outcomes.Ethics and disseminationThis study protocol has been approved by the Institutional Review Board at the University of Louisville. Results from this study will be disseminated at scientific conferences and in peer-reviewed publications.Trial registration: NCT03314987; Pre-results