Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
702 result(s) for "Park, Christian"
Sort by:
Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier
Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses. The impact of ultrasound-controlled microbubble dynamics on the blood-brain barrier remains largely unexplored. Through theoretical and experimental research, the authors show that microbubble resonant effects in brain vessels can control the enrichment of inflammatory pathways and modulate cytotoxic T-cell infiltration in tumours.
Flow-induced reprogramming of endothelial cells in atherosclerosis
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.In this Review, Jo and colleagues discuss blood flow-induced mechanisms involved in endothelial cell dysfunction and atherosclerosis, including the emerging concept of disturbed-flow-induced reprogramming of endothelial cells as a pro-atherogenic mechanism, and highlight the therapeutic potential of targeting of flow-sensitive genes, proteins and pathways.
Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis
Atherosclerosis occurs in arterial regions exposed to disturbed flow, where endothelial expression of flow-sensitive, atheroprotective genes such as KLF2 and KLF4 is reduced. Protecting the endothelial expression of KLF2 and KLF4 from inhibitory factors could be a therapeutic approach to prevent vascular inflammation and atherosclerosis.
Machine vs. Radiologist-Based Translations of RadLex: Implications for Multi-language Report Interoperability
The purpose of this study was to evaluate the feasibility of translation of RadLex lexicon from English to German performed by Google Translate, using the RadLex ontology as ground truth. The same comparison was also performed for German to English translations. We determined the concordance rate of the Google Translate–rendered translations (for both English to German and German to English translations) to the official German RadLex (translations provided by the German Radiological Society) and English RadLex terms via character-by-character concordance analysis (string matching). Specific term characteristics of term character count and word count were compared between concordant and discordant translations using t-tests. Google Translate–rendered translations originally considered incongruent (2482 English terms and 2500 German terms) were then reviewed by German and English-speaking radiologists to further evaluate clinical utility. Overall success rates of both methods were calculated by adding the percentage of terms marked correct by string comparison to the percentage marked correct during manual review extrapolated to the terms that had been initially marked incorrect during string analysis. 64,632 English and 47,425 German RadLex terms were analyzed. 3507 (5.4%) of the Google Translate–rendered English to German translations were concordant with the official German RadLex terms when evaluated via character-by-character concordance. 3288 (6.9%) of the Google Translate–rendered German to English translations matched the corresponding English RadLex terms. Human review of a random sample of non-concordant machine translations revealed that 95.5% of such English to German translations were understandable, whereas 43.9% of such German to English translations were understandable. Combining both string matching and human review resulted in an overall Google Translate success rate of 95.7% for English to German translations and 47.8% for German to English translations. For certain radiologic text translation tasks, Google Translate may be a useful tool for translating multi-language radiology reports into a common language for natural language processing and subsequent labeling of datasets for machine learning. Indeed, string matching analysis alone is an incomplete method for evaluating machine translation. However, when human review of automated translation is also incorporated, measured performance improves. Additional evaluation using longer text samples and full imaging reports is needed. An apparent discordance between English to German versus German to English translation suggests that the direction of translation affects accuracy.
Side- and Disease-Dependent Changes in Human Aortic Valve Cell Population and Transcriptomic Heterogeneity Determined by Single-Cell RNA Sequencing
Background: Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes. Methods: To test this hypothesis, we performed single-cell RNA sequencing using a new method to collect endothelial-enriched samples independently from the fibrosa and ventricularis sides of freshly obtained human aortic valve leaflets from five donors, ranging from non-diseased to fibrocalcific stages. Results: From the 82,356 aortic valve cells analyzed, we found 27 cell clusters, including seven valvular endothelial cell (VEC), nine valvular interstitial cell (VIC), and seven immune, three transitional, and one stromal cell population. We identified several side-dependent VEC subtypes with unique gene expression patterns. Homeostatic VIC clusters were abundant in non-diseased tissues, while VICs enriched with fibrocalcific genes and pathways were more prevalent in diseased leaflets. Furthermore, homeostatic macrophage (MΦ) clusters decreased while inflammatory MΦ and T-cell clusters increased with disease progression. A foamy MΦ cluster was increased in the fibrosa of mildly diseased tissues. Some side-dependent VEC clusters represented non-diseased, protective phenotypes, while others were CAVD-associated and were characterized by genes enriched in pathways of inflammation, endothelial–mesenchymal transition, apoptosis, proliferation, and fibrosis. Interestingly, we found several activator protein-1 (AP-1)-related transcription factors (FOSB, FOS, JUN, JUNB) and EGR1 to be upregulated in the fibrosa and diseased aortic valve leaflets. Conclusions: Our results showed that VECs are highly heterogeneous in a side- and CAVD-dependent manner. Unique VEC clusters and their differentially regulated genes and pathways found in the fibrosa of diseased tissues may represent novel pathogenic mechanisms and potential therapeutic targets.
Aryl Hydrocarbon Receptor Antagonists Mitigate the Effects of Dioxin on Critical Cellular Functions in Differentiating Human Osteoblast-Like Cells
The inhibition of bone healing in humans is a well-established effect associated with cigarette smoking, but the underlying mechanisms are still unclear. Recent work using animal cell lines have implicated the aryl hydrocarbon receptor (AhR) as a mediator of the anti-osteogenic effects of cigarette smoke, but the complexity of cigarette smoke mixtures makes understanding the mechanisms of action a major challenge. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a high-affinity AhR ligand that is frequently used to investigate biological processes impacted by AhR activation. Since there are dozens of AhR ligands present in cigarette smoke, we utilized dioxin as a prototype ligand to activate the receptor and explore its effects on pro-osteogenic biomarkers and other factors critical to osteogenesis using a human osteoblast-like cell line. We also explored the capacity for AhR antagonists to protect against dioxin action in this context. We found dioxin to inhibit osteogenic differentiation, whereas co-treatment with various AhR antagonists protected against dioxin action. Dioxin also negatively impacted cell adhesion with a corresponding reduction in the expression of integrin and cadherin proteins, which are known to be involved in this process. Similarly, the dioxin-mediated inhibition of cell migration correlated with reduced expression of the chemokine receptor CXCR4 and its ligand, CXCL12, and co-treatment with antagonists restored migratory capacity. Our results suggest that AhR activation may play a role in the bone regenerative response in humans exposed to AhR activators, such as those present in cigarette smoke. Given the similarity of our results using a human cell line to previous work done in murine cells, animal models may yield data relevant to the human setting. In addition, the AhR may represent a potential therapeutic target for orthopedic patients who smoke cigarettes, or those who are exposed to secondhand smoke or other environmental sources of aryl hydrocarbons.
Flow-sensitive HEG1 controls eNOS activity to prevent endothelial dysfunction, hypertension, and atherosclerosis
Hypertension (HTN), the chronic elevation of blood pressure, accounts for more atherosclerotic cardiovascular disease deaths than any other modifiable risk factor. In the arteries, stable blood flow (s-flow) drives healthy, atheroprotective endothelial cell (EC) functions including nitric oxide (NO) production, barrier function, and anti-inflammatory programs via the action of flow-sensitive proteins. We showed that s-flow stimulates Heart-of-Glass 1 (HEG1) protein expression, localization to cell-cell junctions, and secretion from ECs. We found that conditional, endothelial cell-specific knockout of ( ) exacerbates atherosclerosis , however the mechanism was unknown. Here, we report a new role of HEG1 in controlling EC dysfunction, hypertension and atherosclerosis. We discover a novel mechanism: HEG1 regulates NO bioavailability via a flow-dependent HEG1-eNOS interaction (endothelial nitric oxide synthase, NOS3). develops spontaneous hypertension and severe atherosclerosis, both of which are effectively treated by Angiotensin-Converting Enzyme inhibition (ACEi). UK BioBank and Swedish cohort studies reveal that plasma HEG1 levels are associated with hypertension and cardiovascular disease risk. Our findings suggest HEG1 may serve as a biomarker to advance personalized therapies for EC dysfunction, hypertension, and atherosclerosis.
Disturbed Flow Induces Reprogramming of Endothelial Cells to Immune-like and Foam Cells under Hypercholesterolemia during Atherogenesis
Atherosclerosis occurs preferentially in the arteries exposed to disturbed flow (d-flow), while the stable flow (s-flow) regions are protected even under hypercholesterolemic conditions. We recently showed that d-flow alone initiates flow-induced reprogramming of endothelial cells (FIRE), including the novel concept of partial endothelial-to-immune-cell-like transition (partial EndIT), but was not validated using a genetic lineage-tracing model. Here, we tested and validated the two-hit hypothesis that d-flow is an initial instigator of partial FIRE but requires hypercholesterolemia to induce a full-blown FIRE and atherosclerotic plaque development. Mice were treated with adeno-associated virus expressing proprotein convertase subtilisin/kexin type 9 and a Western diet to induce hypercholesterolemia and/or partial carotid ligation (PCL) surgery to expose the left common carotid artery (LCA) to d-flow. Single-cell RNA sequencing (scRNA-seq) analysis was performed using cells obtained from the intima and leftover LCAs and the control right common carotid arteries at 2 and 4 weeks post-PCL. Comprehensive immunohistochemical staining was performed on EC-specific confetti mice treated with PCL and hypercholesterolemic conditions at 4 weeks post-PCL to validate endothelial reprogramming. Atherosclerotic plaques developed by d-flow under hypercholesterolemia at 2 and 4 weeks post-PCL, but not by d-flow or hypercholesterolemia alone, as expected. The scRNA-seq results of 98,553 single cells from 95 mice revealed 25 cell clusters; 5 EC, 3 vascular smooth muscle cell (SMC), 5 macrophage (MΦ), and additional fibroblast, T cell, natural killer cell, dendritic cell, neutrophil, and B cell clusters. Our scRNA-seq analyses showed that d-flow under hypercholesterolemia transitioned healthy ECs to full immune-like (EndIT) and, more surprisingly, foam cells (EndFT), in addition to inflammatory and mesenchymal cells (EndMT). Further, EC-derived foam cells shared remarkably similar transcriptomic profiles with foam cells derived from SMCs and MΦs. Comprehensive lineage-tracing studies using immunohistochemical staining of canonical protein and lipid markers in the EC-specific confetti mice clearly demonstrated direct evidence supporting the novel FIRE hypothesis, including EndIT and EndFT, when d-flow was combined with hypercholesterolemia. Further, reanalysis of the publicly available human carotid plaque scRNA-seq and Perturb-seq datasets supported the FIRE hypothesis and a potential mechanistic link between the genes and FIRE. We provide evidence supporting the two-hit hypothesis: ECs in d-flow regions, such as the branching points, are partially reprogrammed, while hypercholesterolemia alone has minimal endothelial reprogramming effects. Under hypercholesterolemia, d-flow fully reprograms arterial ECs, including the novel EndIT and EndFT, in addition to inflammation and EndMT, during atherogenesis. This single-cell atlas provides a crucial roadmap for developing novel mechanistic understanding and therapeutics targeting flow-sensitive genes, proteins, and pathways of atherosclerosis.
Crossing the border
This chapter 1 examines the contradictions of inter-Korean boundaries in the tourist Zone of Mount Kŭmgang i.e. “the Diamond Mountains” (Kŭmgang-san): how does borderland tourism and the act of crossing the border affect the process of (re)making national identity in this area?
Injectable therapeutic organoids using sacrificial hydrogels
Organoids, by promoting self-organization of cells into native-like structures, are becoming widespread in drug-screening technologies, but have so far been used sparingly for cell therapy as current approaches for producing self-organized cell clusters lack scalability or reproducibility in size and cellular organization. We introduce a method of using hydrogels as sacrificial scaffolds, which allow cells to form self-organized clusters followed by gentle release, resulting in highly reproducible multicellular structures on a large scale. We demonstrated this strategy for endothelial cells and mesenchymal stem cells to self-organize into blood-vessel units, which were injected into mice using hypodermic needles, and observed in real time to rapidly form perfusing vasculature. As cell therapy transforms into a new class of therapeutic modality, this simple method, which makes use of the dynamic nature of hydrogels, could offer high yields of self-organized multicellular aggregates with reproducible sizes and cellular architectures.