Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Park, Hae-Chul"
Sort by:
Small compounds mimicking the adhesion molecule L1 improve recovery in a zebrafish demyelination model
2021
Demyelination leads to a loss of neurons, which results in, among other consequences, a severe reduction in locomotor function, and underlies several diseases in humans including multiple sclerosis and polyneuropathies. Considerable clinical progress has been made in counteracting demyelination. However, there remains a need for novel methods that reduce demyelination while concomitantly achieving remyelination, thus complementing the currently available tools to ameliorate demyelinating diseases. In this study, we used an established zebrafish demyelination model to test selected compounds, following a screening in cell culture experiments and in a mouse model of spinal cord injury that was aimed at identifying beneficial functions of the neural cell adhesion molecule L1. In comparison to mammalian nervous system disease models, the zebrafish allows testing of potentially promotive compounds more easily than what is possible in mammals. We found that our selected compounds tacrine and duloxetine significantly improved remyelination in the peripheral and central nervous system of transgenic zebrafish following pharmacologically induced demyelination. Given that both molecules are known to positively affect functions other than those related to L1 and in other disease contexts, we propose that their combined beneficial function raises hope for the use of these compounds in clinical settings.
Journal Article
Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm
by
Hong, Jin Hee
,
Song, Kyung-Deok
,
Lee, Byunghak
in
631/114/1564
,
631/1647/245/2226
,
631/1647/328/1650
2019
Label-free in vivo imaging is crucial for elucidating the underlying mechanisms of many important biological systems in their most native states. However, the applicability of existing modalities has been limited to either superficial layers or early developmental stages due to tissue turbidity. Here, we report a synchronous angular scanning microscope for the rapid interferometric recording of the time-gated reflection matrix, which is a unique matrix characterizing full light-specimen interaction. By applying single scattering accumulation algorithm to the recorded matrix, we removed both high-order sample-induced aberrations and multiple scattering noise with the effective aberration correction speed of 10,000 modes/s. We demonstrated in vivo imaging of whole neural network throughout the hindbrain of the larval zebrafish at a matured stage where physical dissection used to be required for conventional imaging. Our method will expand the scope of applications for optical imaging, where fully non-invasive interrogation of living specimens is critical.
A major challenge of in vivo imaging is imaging deeper, including in turbid tissue. The authors report an adaptive optics based microscope that uses coherent single scattering signal to reduce sample-induced aberrations and enable fast deep-tissue imaging of in vivo larval zebrafish brain.
Journal Article
Identification of de novo EP300 and PLAU variants in a patient with Rubinstein–Taybi syndrome-related arterial vasculopathy and skeletal anomaly
2021
Rubinstein–Taybi syndrome (RSTS) is a human genetic disorder characterized by distinctive craniofacial features, broad thumbs and halluces, and intellectual disability. Mutations in the CREB binding protein (CREBBP) and E1A binding protein p300 (EP300) are the known causes of RSTS disease. EP300 regulates transcription via chromatin remodeling and plays an important role in cell proliferation and differentiation. Plasminogen activator, urokinase (PLAU) encodes a serine protease that converts plasminogen to plasmin and is involved in several biological processes such as the proteolysis of extracellular matrix-remodeling proteins and the promotion of vascular permeability and angiogenesis. Recently, we discovered a patient who presented with RSTS-related skeletal anomaly and peripheral arterial vasculopathy. To investigate the genetic cause of the disease, we performed trio whole genome sequencing of the genomic DNA from the proband and the proband’s parents. We identified two
de novo
variants coined c.1760T>G (p.Leu587Arg) and c.664G>A (p.Ala222Thr) in
EP300
and
PLAU
, respectively. Furthermore, functional loss of EP300a and PLAUb in zebrafish synergistically affected the intersegmental vessel formation and resulted in the vascular occlusion phenotype. Therefore, we hypothesize that the
de novo
EP300
variant may have caused RSTS, while both the identified
EP300
and
PLAU
variants may have contributed to the patient’s vascular phenotype.
Journal Article
Overexpression of Spexin 1 in the Dorsal Habenula Reduces Anxiety in Zebrafish
by
Jae Young Seong
,
Hae Chul Park
,
Inyoung Jeong
in
Animals
,
Animals, Genetically Modified
,
Anxiety
2019
Spexin (SPX) is an evolutionarily conserved neuropeptide that is expressed in the mammalian brain and peripheral tissue. Two orthologs are present in the teleost, SPX1 and SPX2. SPX1 is involved in reproduction and food intake. Recently, SPX1 neurons have been found to be located in the specific nuclei of dorsal habenula (dHb) and to project into the interpeduncular nucleus (IPN), in which galanin receptor 2a/2b (GALR2a/2b) expression was also observed. This indicates that habenula SPX1 neurons may interact with GALR2a/2b in the IPN; however, the function of SPX1 in the dHb-IPN neuronal circuit remains unknown. To determine the role of SPX1 in the dHb-IPN neural circuit, we generated transgenic zebrafish overexpressing SPX1 specifically in the dHb. We found that transgenic zebrafish overexpressing SPX1 in the dHb had anxiolytic behaviors compared with their wildtype siblings. Furthermore, quantitative PCR revealed that mRNA expression of
and
in the IPN and serotonin-related genes in the raphe was upregulated in the brains of transgenic zebrafish. Taken together, our data suggest that SPX1 function in the dHb-IPN neural circuits is implicated in the regulation of anxiety behaviors
modulation of the serotoninergic system in zebrafish.
Journal Article
Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS
2019
Spexin (SPX) is a highly conserved neuropeptide that is widely expressed in mammalian brain and peripheral tissue. In teleost, SPX1 is mainly expressed in the brain and ovary, and is involved in reproduction and food intake. A second form of SPX, SPX2, was recently identified in chick, Xenopus, and zebrafish. The expression pattern and roles of SPX2 are unknown. SPX (
spx
1) is highly expressed in the vertebrate brain, but its distribution, circuits, and interactions with its putative receptor are unknown. Here, we observed expression of
spx1
in the midbrain and hindbrain, and
spx
2 in the hypothalamic preoptic area using
in situ
RNA hybridization in zebrafish. Analysis of transgenic reporter zebrafish revealed that hindbrain SPX1 neurons are PAX2
+
inhibitory interneurons and project to the spinal cord, where they interact with galanin receptor 2b (GALR2b) neurons, suggesting that hindbrain SPX1 neurons are reticulospinal neurons.
spx
1 mRNA and SPX1 reporter expression were observed in dorsal habenula (dHb). SPX1 neurons in the dHb project to the interpeduncular nucleus (IPN), where GALR2a and GALR2b expression was also observed, suggesting that habenula SPX1 neurons may interact with GALR2a/2b in the IPN.
Journal Article
The forkhead transcription factor Foxj1 controls vertebrate olfactory cilia biogenesis and sensory neuron differentiation
2024
In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type–specific gene expression, such as that of olfactory marker protein ( omp ) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.
Journal Article
CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity
by
Kim, Ae kyung
,
Lee, Hye Eun
,
Byun, Kyunghee
in
1-Phosphatidylinositol 3-kinase
,
Angiogenesis
,
Animals
2019
CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvβ3 through CCN1. Integrin αvβ3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvβ3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis.
Journal Article
Transgenic zebrafish as a model for investigating diabetic peripheral neuropathy: investigation of the role of insulin signaling
by
Lee, Dong-Won
,
Kim, Dong Hwee
,
Park, Hae-Chul
in
chemogenetic ablation
,
diabetic peripheral neuropathy
,
insulin signaling
2024
Diabetic peripheral neuropathy (DPN), a complication of diabetes mellitus (DM), is a neurodegenerative disorder that results from hyperglycemic damage and deficient insulin receptor (IR) signaling in peripheral nerves, triggered by failure of insulin production and insulin resistance. IR signaling plays an important role in nutrient metabolism and synaptic formation and maintenance in peripheral neurons. Although several animal models of DPN have been developed to identify new drug candidates using cytotoxic reagents, nutrient-rich diets, and genetic manipulations, a model showing beneficial effects remains to be established. In this study, we aimed to develop a DPN animal model using zebrafish to validate the effects of drug candidates on sensory neuropathy through in vivo imaging during the early larval stage. To achieve this, we generated Tg (ins:gal4p16);Tg (5uas:epNTR-p2a-mcherry) zebrafish using an enhanced potency nitroreductase (epNTR)-mediated chemogenetic ablation system, which showed highly efficient ablation of pancreatic β-cells following treatment with low-dose metronidazole (MTZ). Using in vivo live imaging, we observed that sensory nerve endings and postsynaptic formation in the peripheral lateral line (PLL) were defective, followed by a disturbance in rheotaxis behavior without any locomotory behavioral changes. Despite defects in sensory nerves and elevated glucose levels, both reactive oxygen species (ROS) levels, a primary cause of DPN, and the number of ganglion cells, remained normal. Furthermore, we found that the activity of mTOR, a downstream target of IR signaling, was decreased in the PLL ganglion cells of the transgenic zebrafish. Our data indicates that peripheral neuropathy results from the loss of IR signaling due to insulin deficiency rather than hyperglycemia alone.
Journal Article
Transgenic fluorescent zebrafish lines that have revolutionized biomedical research
by
Kee, Yun
,
Park, Hae-Chul
,
Kim, Min Jung
in
Biomedical and Life Sciences
,
Fluorescent
,
Hematopoietic
2021
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Journal Article
Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis
2020
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Journal Article