Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
773 result(s) for "Park, Hong-Jin"
Sort by:
Vertical organic synapse expandable to 3D crossbar array
Recently, three-terminal synaptic devices have attracted considerable attention owing to their nondestructive weight-update behavior, which is attributed to the completely separated terminals for reading and writing. However, the structural limitations of these devices, such as a low array density and complex line design, are predicted to result in low processing speeds and high energy consumption of the entire system. Here, we propose a vertical three-terminal synapse featuring a remote weight update via ion gel, which is also extendable to a crossbar array structure. This synaptic device exhibits excellent synaptic characteristics, which are achieved via precise control of ion penetration onto the vertical channel through the weight-control terminal. Especially, the applicability of the developed vertical organic synapse array to neuromorphic computing is demonstrated using a simple crossbar synapse array. The proposed synaptic device technology is expected to be an important steppingstone to the development of high-performance and high-density neural networks. Though three-terminal organic synapses are attractive for artificial neural networks due their weight controllable property, their structural limitations hinder performance. Here, the authors report a crossbar synapse array featuring vertical organic synapses with remote weight update capability.
Artificial optic-neural synapse for colored and color-mixed pattern recognition
The priority of synaptic device researches has been given to prove the device potential for the emulation of synaptic dynamics and not to functionalize further synaptic devices for more complex learning. Here, we demonstrate an optic-neural synaptic device by implementing synaptic and optical-sensing functions together on h -BN/WSe 2 heterostructure. This device mimics the colored and color-mixed pattern recognition capabilities of the human vision system when arranged in an optic-neural network. Our synaptic device demonstrates a close to linear weight update trajectory while providing a large number of stable conduction states with less than 1% variation per state. The device operates with low voltage spikes of 0.3 V and consumes only 66 fJ per spike. This consequently facilitates the demonstration of accurate and energy efficient colored and color-mixed pattern recognition. The work will be an important step toward neural networks that comprise neural sensing and training functions for more complex pattern recognition. Artificial neural networks can emulate the human vision because of their spike-based operation by employing memristors as synapses. Here, Seo et al. integrate synaptic and optical sensing functions in a single heterostructure, which enables accurate and energy-efficient recognition of colored patterns.
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
Brain-inspired parallel computing, which is typically performed using a hardware neural-network platform consisting of numerous artificial synapses, is a promising technology for effectively handling large amounts of informational data. However, the reported nonlinear and asymmetric conductance-update characteristics of artificial synapses prevent a hardware neural-network from delivering the same high-level training and inference accuracies as those delivered by a software neural-network. Here, we developed an artificial van-der-Waals hybrid synapse that features linear and symmetric conductance-update characteristics. Tungsten diselenide and molybdenum disulfide channels were used selectively to potentiate and depress conductance. Subsequently, via training and inference simulation, we demonstrated the feasibility of our hybrid synapse toward a hardware neural-network and also delivered high recognition rates that were comparable to those delivered using a software neural-network. This simulation involving the use of acoustic patterns was performed with a neural network that was theoretically formed with the characteristics of the hybrid synapses. Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.
High-specific-power flexible transition metal dichalcogenide solar cells
Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO x capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g −1 for flexible TMD (WSe 2 ) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g −1 , creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics. Ultrathin transition metal dichalcogenides (TMDs) hold promise for next-generation lightweight photovoltaics. Here, the authors demonstrate the first flexible high power-per-weight TMD solar cells with notably improved power conversion efficiency.
Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction
The recent reports of various photodetectors based on molybdenum disulfide (MoS 2 ) field effect transistors showed that it was difficult to obtain optoelectronic performances in the broad detection range [visible–infrared (IR)] applicable to various fields. Here, by forming a mono-/multi-layer nano-bridge multi-heterojunction structure (more than > 300 junctions with 25 nm intervals) through the selective layer control of multi-layer MoS 2 , a photodetector with ultrasensitive optoelectronic performances in a broad spectral range (photoresponsivity of 2.67 × 10 6  A/W at λ  = 520 nm and 1.65 × 10 4 A/W at λ  = 1064 nm) superior to the previously reported MoS 2 -based photodetectors could be successfully fabricated. The nano-bridge multi-heterojunction is believed to be an important device technology that can be applied to broadband light sensing, highly sensitive fluorescence imaging, ultrasensitive biomedical diagnostics, and ultrafast optoelectronic integrated circuits through the formation of a nanoscale serial multi-heterojunction, just by adding a selective layer control process. Fabrication of photodetector devices by selective etching of 2D materials can enable broadband detection. Here, the authors design mono- and multi-layer nano-bridge multi-heterojunction photodetectors based on MoS 2 with high responsivities of 2.67 × 10 6  A/W and 1.65 × 10 4  A/W in the visible–infrared wavelength range and fast photoresponse.
Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array
In-memory computing is an attractive alternative for handling data-intensive tasks as it employs parallel processing without the need for data transfer. Nevertheless, it necessitates a high-density memory array to effectively manage large data volumes. Here, we present a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors (LG-FeFETs). The interlocking effect of the α-In 2 Se 3 is utilized to regulate the channel conductance. Our study examined the distinctive characteristics of the LG-FeFET, such as a notably wide memory window, effective ferroelectric switching, long retention time (over 3 × 10 4  seconds), and high endurance (over 10 5 cycles). This device is also well-suited for implementing vertically stacked structures because decreasing its height can help mitigate the challenges associated with the integration process. We devised a 3D stacked structure using the LG-FeFET and verified its feasibility by performing multiply-accumulate (MAC) operations in a two-tier stacked memory configuration. Designing a high-density memory array to effectively manage large data volumes remains a challenge. Here, the authors introduce a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors device with high vertical scalability and efficient memory properties, making it suitable for 3D in-memory computing structures.
Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic
Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS 2 ) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS 2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. Electronic devices based on negative differential resistance hold promise for multi-valued logic applications. Here, the authors implement such functionalities using an atomically thin phosphorene/rhenium disulfide van der Waals heterostructure, and further demonstrate the implementation of a ternary inverter.
Ferroelectric Field‐Effect‐Transistor Integrated with Ferroelectrics Heterostructure
To address the demands of emerging data‐centric computing applications, ferroelectric field‐effect transistors (Fe‐FETs) are considered the forefront of semiconductor electronics owing to their energy and area efficiency and merged logic–memory functionalities. Herein, the fabrication and application of an Fe‐FET, which is integrated with a van der Waals ferroelectrics heterostructure (CuInP2S6/α‐In2Se3), is reported. Leveraging enhanced polarization originating from the dipole coupling of CIPS and α‐In2Se3, the fabricated Fe‐FET exhibits a large memory window of 14.5 V at VGS = ±10 V, reaching a memory window to sweep range of ≈72%. Piezoelectric force microscopy measurements confirm the enhanced polarization‐induced wider hysteresis loop of the double‐stacked ferroelectrics compared to single ferroelectric layers. The Landau–Khalatnikov theory is extended to analyze the ferroelectric characteristics of a ferroelectric heterostructure, providing detailed explanations of the hysteresis behaviors and enhanced memory window formation. The fabricated Fe‐FET shows nonvolatile memory characteristics, with a high on/off current ratio of over 106, long retention time (>104 s), and stable cyclic endurance (>104 cycles). Furthermore, the applicability of the ferroelectrics heterostructure is investigated for artificial synapses and for hardware neural networks through training and inference simulation. These results provide a promising pathway for exploring low‐dimensional ferroelectronics. The authors report on the fabrication and application of a ferroelectric transistor integrated with a van der Waals ferroelectrics heterostructure (CuInP2S6/α‐In2Se3). Leveraging enhanced polarization originating from the dipole coupling, the fabricated device exhibits a large memory window and nonvolatile memory characteristics with long retention time and stable cyclic endurance, providing a promising pathway for exploring low‐dimensional ferroelectronics.
Stereotactic Body Radiation Therapy as an Alternative Treatment for Small Hepatocellular Carcinoma
Even with early stage hepatocellular carcinoma (HCC), patients are often ineligible for surgical resection, transplantation, or local ablation due to advanced cirrhosis, donor shortage, or difficult location. Stereotactic body radiation therapy (SBRT) has been established as a standard treatment option for patients with stage I lung cancer, who are not eligible for surgery, and may be a promising alternative treatment for patients with small HCC who are not eligible for curative treatment. A registry database of 93 patients who were treated with SBRT for HCC between 2007 and 2009 was analyzed. A dose of 10-20 Gy per fraction was given over 3-4 consecutive days, resulting in a total dose of 30-60 Gy. The tumor response was determined using dynamic computed tomography or magnetic resonance imaging, which was performed 3 months after completion of SBRT. The median follow-up period was 25.6 months. Median size of tumors was 2 cm (range: 1-6 cm). Overall patients' survival rates at 1 and 3 years were 86.0% and 53.8%, respectively. Complete and partial tumor response were achieved in 15.5% and 45.7% of patients, respectively. Local recurrence-free survival rate was 92.1% at 3 years. Most local failures were found in patients with HCCs > 3 cm, and local control rate at 3 years was 76.3% in patients with HCC > 3 cm, 93.3% in patients with tumors between 2.1-3 cm, and 100% in patients with tumors ≤ 2 cm, respectively. Out-of-field intrahepatic recurrence-free survival rates at 1 and 3 years were 51.9% and 32.4%, respectively. Grade ≥ 3 hepatic toxicity was observed in 6 (6.5%). SBRT was effective in local control of small HCC. SBRT may be a promising alternative treatment for patients with small HCC which is unsuitable for other curative therapy.
Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial
The role of adjuvant chemotherapy for patients with rectal cancer is controversial, especially when used after preoperative chemoradiotherapy. Fluoropyrimidine-based adjuvant chemotherapy, including fluorouracil and leucovorin, has been widely used; however, the addition of oxaliplatin to fluorouracil and leucovorin (FOLFOX), a standard adjuvant regimen for colon cancer, has not been tested in rectal cancer. We aimed to compare the efficacy and safety of adjuvant fluorouracil and leucovorin with that of FOLFOX in patients with locally advanced rectal cancer after preoperative chemoradiotherapy. In this open-label, multicentre, phase 2, randomised trial, patients with postoperative pathological stage II (ypT3–4N0) or III (ypTanyN1–2) rectal cancer after preoperative fluoropyrimidine-based chemoradiotherapy and total mesorectal excision were recruited and randomly assigned (1:1) via a web-based software platform to receive adjuvant chemotherapy with either four cycles of fluorouracil and leucovorin (fluorouracil 380 mg/m2 and leucovorin 20 mg/m2 on days 1–5, every 4 weeks) or eight cycles of FOLFOX (oxaliplatin 85 mg/m2, leucovorin 200 mg/m2, and fluorouracil bolus 400 mg/m2 on day 1, and fluorouracil infusion 2400 mg/m2 for 46 h, every 2 weeks). Stratification factors were pathological stage (II vs III) and centre. Neither patients nor investigators were masked to group assignment. The primary endpoint was 3-year disease-free survival, analysed by intention to treat. This study is fully enrolled, is in long-term follow-up, and is registered with ClinicalTrials.gov, number NCT00807911. Between Nov 19, 2008, and June 12, 2012, 321 patients were randomly assigned to fluorouracil and leucovorin (n=161) and FOLFOX (n=160). 141 (95%) of 149 patients in the fluorouracil plus leucovorin group and 141 (97%) of 146 in the FOLFOX group completed all planned cycles of adjuvant treatment. Median follow-up was 38·2 months (IQR 26·4–50·6). 3-year disease-free survival was 71·6% (95% CI 64·6–78·6) in the FOLFOX group and 62·9% (55·4–70·4) in the fluorouracil plus leucovorin group (hazard ratio 0·657, 95% CI 0·434–0·994; p=0·047). Any grade neutropenia, thrombocytopenia, fatigue, nausea, and sensory neuropathy were significantly more common in the FOLFOX group than in the fluorouracil plus leucovorin group; however, we noted no significant difference in the frequency of these events at grade 3 or 4. The most common grade 3 or worse adverse events were neutropenia (38 [26%] of 149 patients in the fluorouracil plus leucovorin group vs 52 [36%] of 146 patients in the FOLFOX group), leucopenia (eight [5%] vs 12 [8%]), febrile neutropenia (four [3%] vs one [<1%]), diarrhoea (four [3%] vs two [1%]), and nausea (one [<1%] vs two [1%]). Adjuvant FOLFOX improves disease-free survival compared with fluorouracil plus leucovorin in patients with locally advanced rectal cancer after preoperative chemoradiotherapy and total mesorectal excision, and warrants further investigation. Korea Healthcare Technology R&D Project (South Korean Ministry of Health and Welfare).