Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
146 result(s) for "Park, JeongHoon"
Sort by:
Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures
The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly. PVA is a hydrogel that has attractive swelling properties for use in tunable photonic applications. Here, the authors exploit PVA with nanoimprint lithography to realize multiplexed optical encryption metasurfaces to display, hide, and destroy encrypted information.
Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible
Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.
Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals
Mechanical metamaterials and phononic crystals enable localizing, focusing, and guiding of elastic or acoustic waves in various ways. Here, we describe the physical mechanisms underpinning wave manipulation and then review the most recent energy harvesting methods for converting localized mechanical wave energy to useable electrical energy. Due to the exceptional wave-matter interactions enabled by the man-made structures, energy is collected more efficiently than through conventional methods. Artificially designed mechanical structures are versatile, especially when used in renewable and ecologically-benign energy transformation, and have a wide array of potential applications. Judicious design of metamaterials and phononic crystals permits the realization of novel localization and wave-guiding properties. Here, recent developments and strategies for applying these structures to piezoelectric energy harvesting are reviewed.
Apoptosis-derived membrane vesicles drive the cGAS–STING pathway and enhance type I IFN production in systemic lupus erythematosus
ObjectiveDespite the importance of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) pathogenesis, the mechanisms of IFN-I production have not been fully elucidated. Recognition of nucleic acids by DNA sensors induces IFN-I and interferon-stimulated genes (ISGs), but the involvement of cyclic guanosine monophosphate (GMP)–AMP synthase (cGAS) and stimulator of interferon genes (STING) in SLE remains unclear. We studied the role of the cGAS–STING pathway in the IFN-I-producing cascade driven by SLE serum.MethodsWe collected sera from patients with SLE (n=64), patients with other autoimmune diseases (n=31) and healthy controls (n=35), and assayed them using a cell-based reporter system that enables highly sensitive detection of IFN-I and ISG-inducing activity. We used Toll-like receptor-specific reporter cells and reporter cells harbouring knockouts of cGAS, STING and IFNAR2 to evaluate signalling pathway-dependent ISG induction.ResultsIFN-I bioactivity and ISG-inducing activities of serum were higher in patients with SLE than in patients with other autoimmune diseases or healthy controls. ISG-inducing activity of SLE sera was significantly reduced in STING-knockout reporter cells, and STING-dependent ISG-inducing activity correlated with disease activity. Double-stranded DNA levels were elevated in SLE. Apoptosis-derived membrane vesicles (AdMVs) from SLE sera had high ISG-inducing activity, which was diminished in cGAS-knockout or STING-knockout reporter cells.ConclusionsAdMVs in SLE serum induce IFN-I production through activation of the cGAS–STING pathway. Thus, blockade of the cGAS–STING axis represents a promising therapeutic target for SLE. Moreover, our cell-based reporter system may be useful for stratifying patients with SLE with high ISG-inducing activity.
Wide field-of-hearing metalens for aberration-free sound capture
Metalenses are instruments that manipulate waves and have exhibited remarkable capabilities to date. However, an important hurdle arises due to the severe hampering of the angular response originating from coma and field curvature aberrations, which result in a loss of focusing ability. Herein, we provide a blueprint by introducing the notion of a wide field-of-hearing (FOH) metalens, designed particularly for capturing and focusing sound with decreased aberrations. Employing an aberration-free planar-thin metalens that leverages perfect acoustic symmetry conversion, we experimentally realize a robust wide FOH capability of approximately 140 ∘ in angular range. Moreover, our metalens features a relatively short focal length, enabling compact implementation by reducing the aperture-to-hearing plane distance. This is beneficial for space-efficient source-tracking sound sensing. Our strategy can be used across various platforms, potentially including energy harvesting, monitoring, imaging, and communication in auditory, ultrasonic, and submerged environments. Achieving a wide angular response in single layer acoustic metalenses is challenging. By leveraging perfect acoustic symmetry conversion, the authors realize an aberration free metalens with a wide field-of-hearing, up to 140 degrees.
Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures
Metamaterials are composed of arrays of subwavelength-sized artificial structures; these architectures give rise to novel characteristics that can be exploited to manipulate electromagnetic waves and acoustic waves. They have been also used to manipulate elastic waves, but such waves have a coupling property, so metamaterials for elastic waves uses a different method than for electromagnetic and acoustic waves. Since researches on this type of metamaterials is sparse, this paper reviews studies that used elastic materials to manipulate elastic waves, and introduces applications using extraordinary characteristics induced by metamaterials. Bragg scattering and local resonances have been exploited to introduce a locally resonant elastic metamaterial, a gradient-index lens, a hyperlens, and elastic cloaking. The principles and applications of metasurfaces that can overcome the disadvantages of bulky elastic metamaterials are discussed.
Humidity‐Responsive RGB‐Pixels via Swelling of 3D Nanoimprinted Polyvinyl Alcohol
Humidity‐responsive structural coloration is actively investigated to realize real‐time humidity sensors for applications in smart farming, food storage, and healthcare management. Here, humidity‐tunable nano pixels are investigated with a 700 nm resolution that demonstrates full standard RGB (sRGB) gamut coverage with a millisecond‐response time. The color pixels are designed as Fabry–Pérot (F–P) etalons which consist of an aluminum mirror substrate, humidity‐responsive polyvinyl alcohol (PVA) spacer, and a top layer of disordered silver nanoparticles (NPs). The measured volume change of the PVA reaches up to 62.5% when the relative humidity (RH) is manipulated from 20 to 90%. The disordered silver NP layer permits the penetration of water molecules into the PVA layer, enhancing the speed of absorption and swelling down to the millisecond level. Based on the real‐time response of the hydrogel‐based F–P etalons with a high‐throughput 3D nanoimprint technique, a high‐resolution multicolored color print that can have potential applications in display technologies and optical encryption, is demonstrated. Reversible humidity‐responsive 700 nm2 full‐color pixels are demonstrated through nanoimprinting lithography. The pixel consists of a mirror, humidity‐responsive polyvinyl alcohol, and top silver nanoparticles, and demonstrates the sRGB with the relative humidity changes. Silver nanoparticles shorten the modulation speed by a millisecond due to porosity, while the effective optical properties extend the absorption bandwidth, thereby enabling vivid color.
Chiral trabeated metabeam for low-frequency multimode wave mitigation via dual-bandgap mechanism
An elastic wave in a physical beam naturally possesses many wave modes, such as flexural, longitudinal, and torsional. Therefore, suppression of all possible vibration modes has been rarely achieved in beam-shaped periodic systems, especially at low frequencies. Here we present a low-frequency complete bandgap mechanism by overlapping the flexural bandgap with the longitudinal-torsional bandgap. To strengthen the general framework, we enforce an extra degree of freedom (rotational and torsional-spring) on the spring-mass system for the flexural and coupled (longitudinal-torsional) modes. The low rotational stiffness provides a low flexural bandgap, whereas the torsional stiffness yields a coupled-mode bandgap. To meet these prerequisites in physical modeling, a chiral trabeated metabeam is conceived, which allows all wave modes to be suppressed by a complete bandgap. Apart from single-mode mitigation, our work provides a route to implementing a low-frequency complete bandgap in a periodic fashion, potentially enabling the use of chirality in elastic structures. Engineering the mechanical response of metamaterials allows control of mechanical modes, with potential application to vibrational isolation. Here, a general framework for achieving a complete band-gap by combining orthogonal flexural and longitudinal-torsional band-gaps is demonstrated analytically and experimentally.
The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II
Lysosomes are involved in nutrient sensing via the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 is tethered to lysosomes by the Ragulator complex, a heteropentamer in which Lamtor1 wraps around Lamtor2–5. Although the Ragulator complex is required for cell migration, the mechanisms by which it participates in cell motility remain unknown. Here, we show that lysosomes move to the uropod in motile cells, providing the platform where Lamtor1 interacts with the myosin phosphatase Rho-interacting protein (MPRIP) independently of mTORC1 and interferes with the interaction between MPRIP and MYPT1, a subunit of myosin light chain phosphatase (MLCP), thereby increasing myosin II–mediated actomyosin contraction. Additionally, formation of the complete Ragulator complex is required for leukocyte migration and pathophysiological immune responses. Together, our findings demonstrate that the lysosomal Ragulator complex plays an essential role in leukocyte migration by activating myosin II through interacting with MPRIP. Myosin II–mediated contractility is required for leukocyte migration. Here, authors show that lysosomes are involved in leukocyte migration by providing the platform where Ragulator complex interacts with the myosin phosphatase Rho-interacting protein (MPRIP) independently of mTORC1 and interferes with the interaction between MPRIP and a subunit of myosin light chain phosphatase (MLCP).