Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
348 result(s) for "Park, Seung Pyo"
Sort by:
TMEM16A confers receptor-activated calcium-dependent chloride conductance
Calcium (Ca 2+ )-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca 2+ -activated chloride channel that is activated by intracellular Ca 2+ and Ca 2+ -mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca 2+ -activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca 2+ -activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca 2+ -activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes. TMEM16A (anoctamin 1) as a calcium-activated channel Calcium-activated chloride channels play a fundamental role in many physiological processes, but their molecular identity has so far evaded characterization. This paper shows that the transmembrane protein TMEM16A, also known as anoctamin 1 or ANO1, is a Ca 2+ -activated chloride channel. TMEM16A has a novel trimeric structure composed of eight transmembrane domains, very different from all previously characterized ionic channels. Its knock-down reduced native Ca 2+ activated chloride currents and impairs salivary secretion in mice.
Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy
The deposit of polyubiquitinated aggregates has been implicated in the pathophysiology of Parkinson's disease (PD), and growing evidence indicates that selective autophagy plays a critical role in the clearance of ubiquitin-positive protein aggregates by autophagosomes. The selective autophagic receptor p62/SQSTM-1, which associates directly with both ubiquitin and LC3, transports ubiquitin conjugates to autophagosomes for degradation. Leucine-rich repeat kinase 2 (LRRK2), a PD-associated protein kinase, is tightly controlled by autophagy-lysosome degradation as well as by the ubiquitin-proteasome pathway. However, little is known about the degradation of ubiquitinated LRRK2 via selective autophagy. In the present study, we found that p62/SQSTM-1 physically interacts with LRRK2 as a selective autophagic receptor. The overexpression of p62 leads to the robust degradation of LRRK2 through the autophagy-lysosome pathway. In addition, LRRK2 indirectly regulates Ser351 and Ser403 phosphorylation of p62. Of particular interest, the interaction between phosphorylated p62 and Keap1 is reduced by LRRK2 overexpression. Therefore, we propose that the interplay between LRRK2 and p62 may contribute to the pathophysiological function and homeostasis of LRRK2 protein.
IL-4 Induced Innate CD8+ T Cells Control Persistent Viral Infection
Memory-like CD8+ T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL-4 produced by PLZF+ innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate CD8+ T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate CD8+ T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate CD8+ T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-γ and TNF-α with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate CD8+ T cells works as an early defense mechanism against chronic viral infection.
Interplay between Leucine-Rich Repeat Kinase 2
The deposit of polyubiquitinated aggregates has been implicated in the pathophysiology of Parkinson's disease (PD), and growing evidence indicates that selective autophagy plays a critical role in the clearance of ubiquitin-positive protein aggregates by autophagosomes. The selective autophagic receptor p62/SQSTM-1, which associates directly with both ubiquitin and LC3, transports ubiquitin conjugates to autophagosomes for degradation. Leucine-rich repeat kinase 2 (LRRK2), a PD-associated protein kinase, is tightly controlled by autophagy-lysosome degradation as well as by the ubiquitin-proteasome pathway. However, little is known about the degradation of ubiquitinated LRRK2 via selective autophagy. In the present study, we found that p62/SQSTM-1 physically interacts with LRRK2 as a selective autophagic receptor. The overexpression of p62 leads to the robust degradation of LRRK2 through the autophagy-lysosome pathway. In addition, LRRK2 indirectly regulates Ser351 and Ser403 phosphorylation of p62. Of particular interest, the interaction between phosphorylated p62 and Keap1 is reduced by LRRK2 overexpression. Therefore, we propose that the interplay between LRRK2 and p62 may contribute to the pathophysiological function and homeostasis of LRRK2 protein.
IL-4 Induced Innate CD8 + T Cells Control Persistent Viral Infection
Memory-like CD8+ T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL-4 produced by PLZF+ innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate CD8+ T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate CD8+ T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate CD8+ T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-[gamma] and TNF-[alpha] with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate CD8+ T cells works as an early defense mechanism against chronic viral infection.
IL-4 induced innate CD8.sup.+ T cells control persistent viral infection
Memory-like [CD8.sup.+] T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL-4 produced by [PLZF.sup.+] innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate [CD8.sup.+] T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate [CD8.sup.+] T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate [CD8.sup.+] T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-γ and TNF-α with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate [CD8.sup.+] T cells works as an early defense mechanism against chronic viral infection.
Attenuation of Experimental Autoimmune Encephalomyelitis in a Common Marmoset Model by Dendritic Cell-Modulating Anti-ICAM-1 Antibody, MD-3
MD-3 is a novel anti-human ICAM-1 monoclonal antibody that induces T cell tolerance in humanized mice via modulation of dendritic cell differentiation and efficiently suppresses the development of collagen-induced arthritis. This effect has also been observed in xenograft rejection in nonhuman primates, where grafts survived for more than 2.5 years following MD-3 administration. Here, we show that MD-3 can attenuate experimental autoimmune encephalomyelitis (EAE) that was induced in common marmoset monkeys by immunization with human myelin oligodendrocyte glycoproteins. MD-3 administration was initiated 1 week after immunization and efficiently delayed the development of EAE phenotypes, although the disease was not completely prevented. Based on the results of histopathological examination, MD-3 treatment greatly suppressed total inflammation with respect to demyelination, as well as T cell and microglial infiltration in the brain. However, the antibody response against myelin oligodendrocyte glycoprotein was not suppressed with this treatment protocol. These observations suggest that the MD-3 antibody has beneficial effects on the treatment of EAE via the suppression of T cell-mediated cellular responses.
Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N 4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N 4 moiety incorporated in nitrogen-doped graphene for H 2 O 2 production and exhibits a kinetic current density of 2.8 mA cm −2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g −1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H 2 O 2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H 2 O 2 production.
Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts
The reversible and cooperative activation process, which includes electron transfer from surrounding redox mediators, the reversible valence change of cofactors and macroscopic functional/structural change, is one of the most important characteristics of biological enzymes, and has frequently been used in the design of homogeneous catalysts. However, there are virtually no reports on industrially important heterogeneous catalysts with these enzyme-like characteristics. Here, we report on the design and synthesis of highly active TiO2 photocatalysts incorporating site-specific single copper atoms (Cu/TiO2) that exhibit a reversible and cooperative photoactivation process. Our atomic-level design and synthetic strategy provide a platform that facilitates valence control of co-catalyst copper atoms, reversible modulation of the macroscopic optoelectronic properties of TiO2 and enhancement of photocatalytic hydrogen generation activity, extending the boundaries of conventional heterogeneous catalysts.Reversible and cooperative activation processes are important characteristics of biological enzymes and can be used in designing catalysts. Highly active TiO2 photocatalysts incorporated with site-specific single copper atoms are now shown to exhibit such a photoactivation process.
FABP3-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging
Sarcopenia is characterized by decreased skeletal muscle mass and function with age. Aged muscles have altered lipid compositions; however, the role and regulation of lipids are unknown. Here we report that FABP3 is upregulated in aged skeletal muscles, disrupting homeostasis via lipid remodeling. Lipidomic analyses reveal that FABP3 overexpression in young muscles alters the membrane lipid composition to that of aged muscle by decreasing polyunsaturated phospholipid acyl chains, while increasing sphingomyelin and lysophosphatidylcholine. FABP3-dependent membrane lipid remodeling causes ER stress via the PERK-eIF2α pathway and inhibits protein synthesis, limiting muscle recovery after immobilization. FABP3 knockdown induces a young-like lipid composition in aged muscles, reduces ER stress, and improves protein synthesis and muscle recovery. Further, FABP3 reduces membrane fluidity and knockdown increases fluidity in vitro, potentially causing ER stress. Therefore, FABP3 drives membrane lipid composition-mediated ER stress to regulate muscle homeostasis during aging and is a valuable target for sarcopenia. Ageing leads to a loss of muscle mass and strength, called sarcopenia. Here, the authors show that fatty acid binding protein 3 (FABP3), a lipid chaperone, drives age-dependent lipidome remodeling in skeletal muscle and deteriorates muscle mass and contractility by modulating membrane fluidity and ER stress signaling.