Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,074 result(s) for "Park, Sung-Min"
Sort by:
Deep ECG-Respiration Network (DeepER Net) for Recognizing Mental Stress
Unmanaged long-term mental stress in the workplace can lead to serious health problems and reduced productivity. To prevent this, it is important to recognize and relieve mental stress in a timely manner. Here, we propose a novel stress detection algorithm based on end-to-end deep learning using multiple physiological signals, such as electrocardiogram (ECG) and respiration (RESP) signal. To mimic workplace stress in our experiments, we used Stroop and math tasks as stressors, with each stressor being followed by a relaxation task. Herein, we recruited 18 subjects and measured both ECG and RESP signals using Zephyr BioHarness 3.0. After five-fold cross validation, the proposed network performed well, with an average accuracy of 83.9%, an average F1 score of 0.81, and an average area under the receiver operating characteristic (ROC) curve (AUC) of 0.92, demonstrating its superiority over conventional machine learning models. Furthermore, by visualizing the activation of the trained network’s neurons, we found that they were activated by specific ECG and RESP patterns. In conclusion, we successfully validated the feasibility of end-to-end deep learning using multiple physiological signals for recognition of mental stress in the workplace. We believe that this is a promising approach that will help to improve the quality of life of people suffering from long-term work-related mental stress.
Roles of XBP1s in Transcriptional Regulation of Target Genes
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.
An Update on the Role of Nrf2 in Respiratory Disease: Molecular Mechanisms and Therapeutic Approaches
Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.
Design and Framework of Non-Intrusive Spatial System for Child Behavior Support in Domestic Environments
This paper proposes a structured design framework and system architecture for a non-intrusive spatial system aimed at supporting child behavior in everyday domestic environments. Rooted in ethical considerations, our approach defines four core behavior-guided design strategies: routine recovery, emotion-responsive adjustment, behavioral transition induction, and external linkage. Each strategy is meticulously translated into a detailed system logic that outlines input conditions, trigger thresholds, and feedback outputs, designed for implementability with ambient sensing technologies. Through a comparative conceptual analysis of three sensing configurations—low-resolution LiDARs, mmWave radars, and environmental sensors—we evaluate their suitability based on technical feasibility, spatial integration, operationalized privacy metrics, and ethical alignment. Supported by preliminary technical observations from lab-based sensor tests, low-resolution LiDAR emerges as the most balanced option for its ability to offer sufficient behavioral insight while enabling edge-based local processing, robustly protecting privacy, and maintaining compatibility with compact residential settings. Based on this, we present a working three-layered system architecture emphasizing edge processing and minimal-intrusion feedback mechanisms. While this paper primarily focuses on the framework and design aspects, we also outline a concrete pilot implementation plan tailored for small-scale home environments, detailing future empirical validation steps for system effectiveness and user acceptance. This structured design logic and pilot framework lays a crucial foundation for future applications in diverse residential and care contexts, facilitating longitudinal observation of behavioral patterns and iterative refinement through lived feedback. Ultimately, this work contributes to the broader discourse on how technology can ethically and developmentally support children’s autonomy and well-being, moving beyond surveillance to enable subtle, ambient, and socially responsible spatial interactions attuned to children’s everyday lives.
A Complementary Metal-Oxide-Semiconductor Optoelectronic Analog Front-End Preamplifier with Cross-Coupled Active Loads for Short-Range LiDARs
In this paper, a CMOS optoelectronic analog front-end (AFE) preamplifier with cross-coupled active loads for short range LiDAR applications is presented, which consists of a spatially modulated P+/N-well on-chip avalanche photodiode (APD), the differential input stage with cross-coupled active loads, and an output buffer. Particularly, another on-chip dummy APD is inserted at the differential input node to improve the common-mode noise rejection ratio significantly better than conventional single-ended TIAs. Moreover, the cross-coupled active loads are exploited at the output nodes of the preamplifier not only to help generate symmetric output waveforms, but also to enable the limiting operations even without the following post-amplifiers. In addition, the inductive behavior of the cross-coupled active loads extends the bandwidth further. The proposed AFE preamplifier implemented in a 180-nm CMOS process demonstrate the measured results of 63.5 dB dynamic range (i.e., 1 µApp~1.5 mApp input current recovery), 67.8 dBΩ transimpedance gain, 1.6 GHz bandwidth for the APD capacitance of 490 fF, 6.83 pA⁄√Hz noise current spectral density, 85 dB power supply rejection ratio, and 32.4 mW power dissipation from a single 1.8 V supply. The chip core occupies the area of 206 × 150 µm2.
A CMOS Optoelectronic Transceiver with Concurrent Automatic Power Control for Short-Range LiDAR Sensors
This paper presents an optoelectronic transceiver (OTRx) realized in a 180 nm CMOS technology for applications of short-range LiDAR sensors, in which a modified current-mode single-ended VCSEL driver (m-CMVD) is exploited as a transmitter (Tx) and a voltage-mode fully differential transimpedance amplifier (FD-TIA) is employed as a receiver (Rx). Especially for Tx, a concurrent automatic power control (APC) circuit is incorporated to compensate for the inevitable increase in the threshold current in a VCSEL diode. For Rx, two on-chip spatially modulated P+/N- well avalanche photodiodes (APDs) are integrated with the FD-TIA to achieve circuit symmetry. Also, an extra APD is added to facilitate the APC operations in Tx, i.e., concurrently adjusting the bias current of the VCSEL diode by the action of the newly proposed APC path in Rx. Measured results of test chips demonstrate that the proposed OTRx causes the DC bias current to increase from 0.93 mA to 1.42 mA as the input current decreases from 250 µApp to 3 µApp, highlighting its suitability for short-range sensor applications utilizing a cost-effective CMOS process.
An 8 × 8 CMOS Optoelectronic Readout Array of Short-Range LiDAR Sensors
This paper presents an 8 × 8 channel optoelectronic readout array (ORA) realized in the TSMC 180 nm 1P6M RF CMOS process for the applications of short-range light detection and ranging (LiDAR) sensors. We propose several circuit techniques in this work, including an amplitude-to-voltage (A2V) converter that reduces the notorious walk errors by intensity compensation and a time-to-voltage (T2V) converter that acquires the linear slope of the output signals by exploiting a charging circuit, thus extending the input dynamic range significantly from 5 μApp to 1.1 mApp, i.e., 46.8 dB. These results correspond to the maximum detection range of 8.2 m via the action of the A2V converter and the minimum detection range of 56 cm with the aid of the proposed T2V converter. Optical measurements utilizing an 850 nm laser diode confirm that the proposed 8 × 8 ORA with 64 on-chip avalanche photodiodes (APDs) can successfully recover the narrow 5 ns light pulses even at the shortest distance of 56 cm. Hence, this work provides a potential CMOS solution for low-cost, low-power, short-range LiDAR sensors.
3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics
3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays). Conventional PEDOT:PSS inks for electrical interfacing with ex-vivo and in-vivo systems are limited by poor rheological and conductive properties. Here, the authors show a one-shot strategy to fabricate 3D printable and biocompatible PEDOT:PSS-ionic liquid colloidal ink for bioelectronics with 2D and 3D structures.
New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy
In the name of electroceuticals, bioelectronic devices have transformed and become essential for dealing with all physiological responses. This significant advancement is attributable to its interdisciplinary nature from engineering and sciences and also the progress in micro and nanotechnologies. Undoubtedly, in the future, bioelectronics would lead in such a way that diagnosing and treating patients’ diseases is more efficient. In this context, we have reviewed the current advancement of implantable medical electronics (electroceuticals) with their immense potential advantages. Specifically, the article discusses pacemakers, neural stimulation, artificial retinae, and vagus nerve stimulation, their micro/nanoscale features, and material aspects as value addition. Over the past years, most researchers have only focused on the electroceuticals metamorphically transforming from a concept to a device stage to positively impact the therapeutic outcomes. Herein, the article discusses the smart implants’ development challenges and opportunities, electromagnetic field effects, and their potential consequences, which will be useful for developing a reliable and qualified smart electroceutical implant for targeted clinical use. Finally, this review article highlights the importance of wirelessly supplying the necessary power and wirelessly triggering functional electronic circuits with ultra-low power consumption and multi-functional advantages such as monitoring and treating the disease in real-time.
A CMOS Current-Mode Vertical-Cavity-Semiconductor-Emitting-Laser Diode Driver for Short-Range LiDAR Sensors
This paper presents a current-mode VCSEL driver (CMVD) implemented using 180 nm CMOS technology for application in short-range LiDAR sensors, in which current-steering logic is suggested to deliver modulation currents from 0.1 to 10 mApp and a bias current of 0.1 mA simultaneously to the VCSEL diode. For the simulations, the VCSEL diode is modeled with a 1.6 V forward-bias voltage and a 50 Ω series resistor. The post-layout simulations of the proposed CMVD clearly demonstrate large output pulses and eye-diagrams. Measurements of the CMVD demonstrate large output pulses, confirming the simulation results. The chip consumes a maximum of 11 mW from a 3.3 V supply, and the core occupies an area of 0.1 mm2.