Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
257 result(s) for "Parmigiani, Giovanni"
Sort by:
ComBat-seq: batch effect adjustment for RNA-seq count data
The benefit of integrating batches of genomic data to increase statistical power is often hindered by batch effects, or unwanted variation in data caused by differences in technical factors across batches. It is therefore critical to effectively address batch effects in genomic data to overcome these challenges. Many existing methods for batch effects adjustment assume the data follow a continuous, bell-shaped Gaussian distribution. However in RNA-seq studies the data are typically skewed, over-dispersed counts, so this assumption is not appropriate and may lead to erroneous results. Negative binomial regression models have been used previously to better capture the properties of counts. We developed a batch correction method, ComBat-seq, using a negative binomial regression model that retains the integer nature of count data in RNA-seq studies, making the batch adjusted data compatible with common differential expression software packages that require integer counts. We show in realistic simulations that the ComBat-seq adjusted data results in better statistical power and control of false positives in differential expression compared to data adjusted by the other available methods. We further demonstrated in a real data example that ComBat-seq successfully removes batch effects and recovers the biological signal in the data.
Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation
Although it has been hypothesized that some of the somatic mutations found in tumors may occur before tumor initiation, there is little experimental or conceptual data on this topic. To gain insights into this fundamental issue, we formulated a mathematical model for the evolution of somatic mutations in which all relevant phases of a tissue’s history are considered. The model makes the prediction, validated by our empirical findings, that the number of somatic mutations in tumors of self-renewing tissues is positively correlated with the age of the patient at diagnosis. Importantly, our analysis indicates that half or more of the somatic mutations in certain tumors of self-renewing tissues occur before the onset of neoplasia. The model also provides a unique way to estimate the in vivo tissue-specific somatic mutation rates in normal tissues directly from the sequencing data of tumors. Our results have substantial implications for the interpretation of the large number of genome-wide cancer studies now being undertaken.
I-SPY 2 — A Glimpse of the Future of Phase 2 Drug Development?
The I-SPY 2 breast cancer trials assess activity of new agents by adaptive randomization, applying criteria for success on a surrogate end point to predict success in confirmatory trials. Innovative designs may speed progress and eliminate waste in drug development. The articles by Rugo et al. (pages 23–34) and Park et al. (pages 11–22) in this issue of the Journal report results from the I-SPY (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis) 2 platform, a promising adaptive strategy for matching targeted therapies for breast cancer with the patients most likely to benefit from them. I-SPY 2 identified two therapies (veliparib with carboplatin in triple-negative breast cancer and neratinib in human epidermal growth factor receptor type 2–positive, hormone receptor–negative [HER2+/HR−] cancer) that met prespecified criteria for testing in larger, phase 3 trials. The value . . .
Only three driver gene mutations are required for the development of lung and colorectal cancers
Significance The number of driver events required for human tumorigenesis has remained one of the fundamental issues in cancer research since the seminal studies of Armitage and Doll. This question has become even more important with the recent genome-wide sequencing studies of cancer, whose major goal is the identification of the driver genes responsible for tumor initiation and progression. By using a novel approach that combines conventional epidemiologic studies with genome-wide sequencing data, we show that only three sequential mutations are required to develop lung and colon adenocarcinomas, a number that is lower than what is typically thought to be required for the formation of cancers of these and other organs. This finding has important implications for the design of future cancer genome-sequencing efforts. Cancer arises through the sequential accumulation of mutations in oncogenes and tumor suppressor genes. However, how many such mutations are required for a normal human cell to progress to an advanced cancer? The best estimates for this number have been provided by mathematical models based on the relation between age and incidence. For example, the classic studies of Nordling [Nordling CO (1953) Br J Cancer 7(1):68–72] and Armitage and Doll [Armitage P, Doll R (1954) Br J Cancer 8(1):1–12] suggest that six or seven sequential mutations are required. Here, we describe a different approach to derive this estimate that combines conventional epidemiologic studies with genome-wide sequencing data: incidence data for different groups of patients with the same cancer type were compared with respect to their somatic mutation rates. In two well-documented cancer types (lung and colon adenocarcinomas), we find that only three sequential mutations are required to develop cancer. This conclusion deepens our understanding of the process of carcinogenesis and has important implications for the design of future cancer genome-sequencing efforts.
Bayesian multi-study non-negative matrix factorization for mutational signatures
Mutational signatures are typically identified from tumor genome sequencing data using non-negative matrix factorization (NMF). However, existing NMF techniques only decompose a single dataset, limiting rigorous comparisons of signatures across conditions. We propose a Bayesian NMF method that jointly decomposes multiple datasets to identify signatures and their sharing pattern across conditions. We propose a fully unsupervised “discovery-only” model and a semi-supervised “recovery-discovery” model that simultaneously estimates known and novel signatures, and extend both to estimate covariate effects. We demonstrate our approach on extensive simulations, and apply our method to answer questions related to colorectal cancer and early-onset breast cancer.
Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models
Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661–671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797–2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100–150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.
Bayesian Response-Adaptive Designs for Basket Trials
We develop a general class of response-adaptive Bayesian designs using hierarchical models, and provide open source software to implement them. Our work is motivated by recent master protocols in oncology, where several treatments are investigated simultaneously in one or multiple disease types, and treatment efficacy is expected to vary across biomarkerdefined subpopulations. Adaptive trials such as I-SPY-2 (Barker et al., 2009) and BATTLE (Zhou et al., 2008) are special cases within our framework. We discuss the application of our adaptive scheme to two distinct research goals. The first is to identify a biomarker subpopulation for which a therapy shows evidence of treatment efficacy, and to exclude other subpopulations for which such evidence does not exist. This leads to a subpopulation-finding design. The second is to identify, within biomarkerdefined subpopulations, a set of cancer types for which an experimental therapy is superior to the standard-of-care. This goal leads to a subpopulat ion-stratified design. Using simulations constructed to faithfully represent ongoing cancer sequencing projects, we quantify the potential gains of our proposed designs relative to conventional non-adaptive designs.
Bone marrow stromal cells induce chromatin remodeling in multiple myeloma cells leading to transcriptional changes
The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches. Bone marrow stromal cells (BMSCs) are known to promote the development of drug resistance. Here, the authors investigate the chromatin remodeling and associated changes in gene expression in the multiple myeloma (MM) cells following their interactions with BMSCs, which are also observed in extramedullary disease (EMD).
Model Averaged Double Robust Estimation
Researchers estimating causal effects are increasingly challenged with decisions on how to best control for a potentially high-dimensional set of confounders. Typically, a single propensity score model is chosen and used to adjust for confounding, while the uncertainty surrounding which covariates to include into the propensity score model is often ignored, and failure to include even one important confounder will results in bias. We propose a practical and generalizable approach that overcomes the limitations described above through the use of model averaging. We develop and evaluate this approach in the context of double robust estimation. More specifically, we introduce the model averaged double robust (MA-DR) estimators, which account for model uncertainty in both the propensity score and outcome model through the use of model averaging. The MA-DR estimators are defined as weighted averages of double robust estimators, where each double robust estimator corresponds to a specific choice of the outcome model and the propensity score model. The MA-DR estimators extend the desirable double robustness property by achieving consistency under the much weaker assumption that either the true propensity score model or the true outcome model be within a specified, possibly large, class of models. Using simulation studies, we also assessed small sample properties, and found that MA-DR estimators can reduce mean squared error substantially, particularly when the set of potential confounders is large relative to the sample size. We apply the methodology to estimate the average causal effect of temozolomide plus radiotherapy versus radiotherapy alone on one-year survival in a cohort of 1887 Medicare enrollees who were diagnosed with glioblastoma between June 2005 and December 2009.
An Integrated Genomic Analysis of Human Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.