Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
540 result(s) for "Pascal, John M."
Sort by:
NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains
PARP-1 cleaves NAD + and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we show using the non-hydrolyzable NAD + analog benzamide adenine dinucleotide (BAD) that PARP-1 autoinhibition results from a selective block on NAD + binding. Following DNA damage detection, BAD binding to the catalytic domain leads to changes in PARP-1 dynamics at distant DNA-binding surfaces, resulting in increased affinity for DNA damage, and providing direct evidence of reverse allostery. Our findings reveal a two-step mechanism to activate and to then stabilize PARP-1 on a DNA break, indicate that PARP-1 allostery influences persistence on DNA damage, and have important implications for PARP inhibitors that engage the NAD + binding site. Poly(ADP-ribose) polymerases (PARPs) catalyse ADP-ribose posttranslational modifications using NAD + as a substrate. Here, the authors present the crystal structure of PARP-1 bound to the non-hydrolyzable NAD + analog BAD and provide insights into the mechanism of PARP-1 allosteric regulation.
Structural Basis for DNA Damage-Dependent Poly(ADP-ribosyl)ation by Human PARP-1
Poly(ADP-ribose) polymerase-1 (PARP-1) (ADP, adenosine diphosphate) has a modular domain architecture that couples DNA damage detection to poly(ADP-ribosyl)ation activity through a poorly understood mechanism. Here, we report the crystal structure of a DNA double-strand break in complex with human PARP-1 domains essential for activation (Zn1, Zn3, WGR-CAT). PARP-1 engages DNA as a monomer, and the interaction with DNA damage organizes PARP-1 domains into a collapsed conformation that can explain the strong preference for automodification. The Zn1, Zn3, and WGR domains collectively bind to DNA, forming a network of interdomain contacts that links the DNA damage interface to the catalytic domain (CAT). The DNA damage-induced conformation of PARP-1 results in structural distortions that destabilize the CAT. Our results suggest that an increase in CAT protein dynamics underlies the DNA-dependent activation mechanism of PARP-1.
HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications
PARP1 and PARP2 produce poly(ADP-ribose) in response to DNA breaks. HPF1 regulates PARP1/2 catalytic output, most notably permitting serine modification with ADP-ribose. However, PARP1 is substantially more abundant in cells than HPF1, challenging whether HPF1 can pervasively modulate PARP1. Here, we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates/dissociates from multiple PARP1 molecules, initiating serine modification before modification initiates on glutamate/aspartate, and accelerating initiation to be more comparable to elongation reactions forming poly(ADP-ribose). This “hit and run” mechanism ensures HPF1 contributions to PARP1/2 during initiation do not persist and interfere with PAR chain elongation. We provide structural insights into HPF1/PARP1 assembled on a DNA break, and assess HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of serine-ADP-ribose modification in cells and the efficiency of serine-ADP-ribose modification required for an acute DNA damage response. HPF1 controls the ADP-ribosylation activity of PARP1/2 in response to DNA breaks. Here, the authors show that HPF1 regulates the balance between ADP-ribose initiation and elongation through a dynamic interaction that accelerates the initiation rate on serine residues.
PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation
Poly(ADP)-ribosylation (PARylation) regulates chromatin structure and recruits DNA repair proteins. Using single-molecule fluorescence microscopy to track topoisomerase I (TOP1) in live cells, we found that sustained PARylation blocked the repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) in a similar fashion as inhibition of the ubiquitin-proteasome system (UPS). PARylation of TOP1-DPC was readily revealed by inhibiting poly(ADP-ribose) glycohydrolase (PARG), indicating the otherwise transient and reversible PARylation of the DPCs. As the UPS is a key repair mechanism for TOP1-DPCs, we investigated the impact of TOP1-DPC PARylation on the proteasome and found that the proteasome is unable to associate with and digest PARylated TOP1-DPCs. In addition, PARylation recruits the deubiquitylating enzyme USP7 to reverse the ubiquitylation of PARylated TOP1-DPCs. Our work identifies PARG as repair factor for TOP1-DPCs by enabling the proteasomal digestion of TOP1-DPCs. It also suggests the potential regulatory role of PARylation for the repair of a broad range of DPCs. TOP1 resolves DNA supercoils by forming cleavage complexes (TOP1cc) that are trapped by TOP1 inhibitors. Here the authors provide insights into the mechanistic understanding of TOP1cc PARylation, showing that inhibition of PARG results in stabilization of TOP1cc PARylation that blocks the proteasomal degradation of TOP1cc.
Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks
PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies. Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates local chromatin relaxation and the recruitment of DNA repair factors at double strand breaks site (DSBs). Here the authors reveal that PARP-1 acts as a critical regulator of DNA end resection of DSBs.
Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity
DNA damage response (DDR) relies on swift and accurate signaling to rapidly identify DNA lesions and initiate repair. A critical DDR signaling and regulatory molecule is the posttranslational modification poly(ADP-ribose) (PAR). PAR is synthesized by a family of structurally and functionally diverse proteins called poly(ADP-ribose) polymerases (PARPs). Although PARPs share a conserved catalytic domain, unique regulatory domains of individual family members endow PARPs with unique properties and cellular functions. Family members PARP-1, PARP-2, and PARP-3 (DDR–PARPs) are catalytically activated in the presence of damaged DNA and act as damage sensors. Family members tankyrase-1 and closely related tankyrase-2 possess SAM and ankyrin repeat domains that regulate their diverse cellular functions. Recent studies have shown that the tankyrases share some overlapping functions with the DDR–PARPs, and even perform novel functions that help preserve genomic integrity. In this review, we briefly touch on DDR–PARP functions, and focus on the emerging roles of tankyrases in genome maintenance. Preservation of genomic integrity thus appears to be a common function of several PARP family members, depicting PAR as a multifaceted guardian of the genome.
Regulation of stress granule maturation and dynamics by poly(ADP-ribose) interaction with PARP13
Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules—a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers. Single amino acid mutations in PARP13, which reduce its PAR-binding activity, lead to the formation of smaller yet more numerous stress granules than observed in the wild-type. This fragmented stress granule phenotype is also apparent in PARP13 variants with cancer-associated single-nucleotide polymorphisms (SNPs) that disrupt PAR binding. Notably, this fragmented phenotype is conserved across a variety of stresses that trigger stress granule formation via diverse pathways. Furthermore, this PAR-binding mutant diminishes condensate dynamics and impedes fusion. Overall, our study uncovers the important role of PAR-protein interactions in stress granule dynamics and maturation, mediated through PARP13. Stress granules, cellular structures essential for stress response, require poly(ADP-ribose) as a multivalent scaffold. Here, the authors show that disrupting poly(ADP-ribose) binding to PARP13 alters granule size, dynamics, and maturation, despite PARP13 lacking ADPribosyltransferase activity.
Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation
Most proteins, such as ion channels, form well-organized 3D structures to carry out their specific functions. A typical voltage-gated potassium channel subunit has six transmembrane segments (S1–S6) to form the voltage-sensing domain and the pore domain. Conformational changes of these domains result in opening of the channel pore. Intrinsically disordered (ID) proteins/peptides are considered equally important for the protein functions. However, it is difficult to explore the structural features underlying the functions of ID proteins/peptides by conventional methods, such as X-ray crystallography, because of the flexibility of their secondary structures. Unlike voltage-gated potassium channels, families of small- and intermediate-conductance Ca 2+ -activated potassium (SK/IK) channels with important roles in regulating membrane excitability are activated exclusively by Ca 2+ -bound calmodulin (CaM). Upon binding of Ca 2+ to CaM, a 2 × 2 structure forms between CaM and the CaM-binding domain. A channel fragment that connects S6 and the CaM-binding domain is not visible in the protein crystal structure, suggesting that this fragment is an ID fragment. Here we show that the conformation of the ID fragment in SK channels becomes readily identifiable in the presence of NS309, the most potent compound that potentiates the channel activities. This well-defined conformation of the ID fragment, stabilized by NS309, increases the channel open probability at a given Ca 2+ concentration. Our results demonstrate that the ID fragment, itself a target for drugs modulating SK channel activities, plays a unique role in coupling Ca 2+ sensing by CaM and mechanical opening of SK channels.
Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex
SK potassium channels are activated by Ca 2+ -bound calmodulin (CaM) and regulated by phosphorylation. Electrophysiology and MD simulations show that a PIP 2 -binding site formed at the interface of CaM and SK2, conferring PIP 2 sensitivity on the channels. Phosphatidylinositol bisphosphate (PIP 2 ) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP 2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP 2 is a key cofactor for activation of small conductance Ca 2+ -activated potassium channels (SKs) by Ca 2+ -bound calmodulin (CaM). Removal of the endogenous PIP 2 inhibits SKs. The PIP 2 -binding site resides at the interface of CaM and the SK C terminus. We further demonstrate that the affinity of PIP 2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP 2 -binding site, by casein kinase 2 reduces the affinity of PIP 2 for the CaM–SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP 2 -binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G protein–mediated hydrolysis of PIP 2 .
Coupling cellular drug-target engagement to downstream pharmacology with CeTEAM
Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets. Compatible mutants appear to follow structural and biophysical logic that permits intra-protein and paralogous expansion of the biosensor pool. We then apply our method to uncouple target engagement from divergent cellular activities of MutT homolog 1 (MTH1) inhibitors, dissect Nudix hydrolase 15 (NUDT15)-associated thiopurine metabolism with the R139C pharmacogenetic variant, and profile the dynamics of poly(ADP-ribose) polymerase 1/2 (PARP1/2) binding and DNA trapping by PARP inhibitors (PARPi). Further, PARP1-derived biosensors facilitated high-throughput screening for PARP1 binders, as well as multimodal ex vivo analysis and non-invasive tracking of PARPi binding in live animals. This approach can facilitate holistic assessment of drug-target engagement by bridging drug binding events and their biological consequences. Cellular target engagement technologies enable quantification of intracellular drug binding, but the simultaneous assessment of drug-associated phenotypes is challenging. Here, the authors develop CeTEAM (cellular target engagement by accumulation of mutant), a platform that can simultaneously evaluate drug-target interactions and phenotypic responses for holistic assessment of drug pharmacology using conditionally stabilized drug biosensors.