Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Pascazio, Roberta"
Sort by:
Resurfaced CsPbBr3 Nanocrystals Enable Free Radical Thermal Polymerization of Efficient Ultrafast Polyvinyl Styrene Nanocomposite Scintillators
Lead halide perovskite nanocrystals (LHP-NCs) embedded in a plastic matrix are highly promising for a variety of photonic technologies and are quickly gaining attention as ultrafast, radiation-resistant nanoscintillators for radiation detection. However, advancements in LHP-NC-based photonics are hindered by their well-known thermal instability, which makes them unsuitable for industrial thermally activated mass polymerization processes - crucial for creating polystyrene-based scintillating nanocomposites. In this study, we address this challenge by presenting the first thermal nanocomposite scintillators made from CsPbBr3 NCs passivated with fluorinated ligands that remain attached to the particles surfaces even at high temperatures, enabling their integration into mass-cured polyvinyl toluene without compromising optical properties. Consequently, these nanocomposites demonstrate scintillation light yields reaching 10,400 photons/MeV, sub-nanosecond scintillation kinetics, and remarkable radiation resilience, able to withstand gamma radiation doses of up to 1 MGy. This performance not only meets but also exceeds the scintillation of plastic scintillators, despite the radiation-induced damage to the host matrix.