Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
5
result(s) for
"Pasch, Ekkehard"
Sort by:
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
by
Pedersen, T. Sunn
,
Bosch, H. -S.
,
Wolf, R. C.
in
639/4077/4091/4093
,
639/766/1960/1136
,
Accuracy
2016
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.
Early stellarator designs suffered from high particle losses, an issue that can be addressed by optimization of the coils. Here the authors measure the magnetic field lines in the Wendelstein 7-X stellarator, confirming that the complicated design of the superconducting coils has been realized successfully.
Journal Article
Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X
by
Braune, Harald
,
Beurskens, Marc
,
Brunner, Kai Jakob
in
Cyclotron resonance
,
Cyclotron resonance devices
,
Electron cyclotron heating
2017
During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.
Journal Article
Accelerated Bayesian inference of plasma profiles with self-consistent MHD equilibria at W7-X via neural networks
by
Kwak, Sehyun
,
Pasch, Ekkehard
,
Merlo, Andrea
in
Bayesian analysis
,
Electron energy
,
Mathematical models
2023
High-\\(\\langle \\beta \\rangle\\) operations require a fast and robust inference of plasma parameters with a self-consistent MHD equilibrium. Precalculated MHD equilibria are usually employed at W7-X due to the high computational cost. To address this, we couple a physics-regularized NN model that approximates the ideal-MHD equilibrium with the Bayesian modeling framework Minerva. We show the fast and robust inference of plasma profiles (electron temperature and density) with a self-consistent MHD equilibrium approximated by the NN model. We investigate the robustness of the inference across diverse synthetic W7-X plasma scenarios. The inferred plasma parameters and their uncertainties are compatible with the parameters inferred using the VMEC, and the inference time is reduced by more than two orders of magnitude. This work suggests that MHD self-consistent inferences of plasma parameters can be performed between shots.
Quantification of systematic errors in the electron density and temperature measured with Thomson scattering at W7-X
by
Bozhenkov, Sergey A
,
Kwak, Sehyun
,
Höfel, Udo
in
Bayesian analysis
,
Data processing
,
Electron density
2023
The electron density and temperature profiles measured with Thomson scattering at the stellarator Wendelstein 7-X show features which seem to be unphysical, but so far could not be associated with any source of error considered in the data processing. A detailed Bayesian analysis reveals that errors in the spectral calibration cannot explain the features observed in the profiles. Rather, it seems that small fluctuations in the laser position are sufficient to affect the profile substantially. The impact of these fluctuations depends on the laser position itself, which, in turn, provides a method to find the optimum laser alignment in the future.
First Results from an Event Synchronized -- High Repetition Thomson Scattering System at Wendelstein 7-X
by
Schmitz, Oliver
,
the Wendelstein 7-X Team
,
Pasch, Ekkehard
in
Cryogenic temperature
,
Diagnostic systems
,
Electron density
2019
The Wendelstein 7-X (W7-X) Thomson scattering (TS) diagnostic was upgraded to transiently achieve kilohertz sampling rates combined with adjustable measuring times. The existing Nd:YAG lasers are employed to repetitively emit \"bursts\", i.e. multiple laser pulses in a short time interval. Appropriately timing burst in the three available lasers, up to twelve evenly spaced consecutive measurements per burst are possible. The pulse-to-pulse increment within a burst can be tuned from 2 ms to 33.3 ms (500 kHz - 30 Hz). Additionally, an event trigger system was developed to synchronize the burst Thomson scattering measurements to plasma events. Exemplary, a case of fast electron density and temperature evolution after cryogenic H2 pellet injection is presented in order to demonstrate the capabilities of the method.