Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Pascual Laguna Alejandro"
Sort by:
First light demonstration of the integrated superconducting spectrometer
Ultra-wideband, three-dimensional (3D) imaging spectrometry in the millimeter–submillimeter (mm–submm) band is an essential tool for uncovering the dust-enshrouded portion of the cosmic history of star formation and galaxy evolution1–3. However, it is challenging to scale up conventional coherent heterodyne receivers4 or free-space diffraction techniques5 to sufficient bandwidths (≥1 octave) and numbers of spatial pixels2,3 (>102). Here, we present the design and astronomical spectra of an intrinsically scalable, integrated superconducting spectrometer6, which covers 332–377 GHz with a spectral resolution of F/ΔF ~ 380. It combines the multiplexing advantage of microwave kinetic inductance detectors (MKIDs)7 with planar superconducting filters for dispersing the signal in a single, small superconducting integrated circuit. We demonstrate the two key applications for an instrument of this type: as an efficient redshift machine and as a fast multi-line spectral mapper of extended areas. The line detection sensitivity is in excellent agreement with the instrument design and laboratory performance, reaching the atmospheric foreground photon noise limit on-sky. The design can be scaled to bandwidths in excess of an octave, spectral resolution up to a few thousand and frequencies up to ~1.1 THz. The miniature chip footprint of a few cm2 allows for compact multi-pixel spectral imagers, which would enable spectroscopic direct imaging and large-volume spectroscopic surveys that are several orders of magnitude faster than what is currently possible1–3.By using a superconducting integrated circuit to filter incoming millimetre, submillimetre and far-infrared light from distant galaxies, a prototype spectrometer holds promise for wideband spectrometers that are small, sensitive and scalable to wideband spectroscopic imagers.
Directional Filter Design and Simulation for Superconducting On-chip Filter-banks
Many superconducting on-chip filter-banks suffer from poor coupling to the detectors behind each filter. This is a problem intrinsic to the commonly used half wavelength filter, which has a maximum theoretical coupling of 50 %. In this paper we introduce a phase coherent filter, called a directional filter, which has a theoretical coupling of 100 %. In order to to study and compare different types of filter-banks, we first analyze the measured filter frequency scatter, losses, and spectral resolution of a DESHIMA 2.0 filter-bank chip. Based on measured fabrication tolerances and losses, we adapt the input parameters for our circuit simulations, quantitatively reproducing the measurements. We find that the frequency scatter is caused by nanometer-scale line-width variations and that variances in the spectral resolution is caused by losses in the dielectric only. Finally, we include these realistic parameters in a full filter-bank model and simulate a wide range of spectral resolutions and oversampling values. For all cases the directional filter-bank has significantly higher coupling to the detectors than the half-wave resonator filter-bank. The directional filter eliminates the need to use oversampling as a method to improve the total efficiency, instead capturing nearly all the power remaining after dielectric losses.
Directional Filter Design and Simulation for Superconducting On-Chip Filter-Banks
Many superconducting on-chip filter-banks suffer from poor coupling to the detectors behind each filter. This is a problem intrinsic to the commonly used half-wavelength filter, which has a maximum theoretical coupling of 50 %. In this paper, we introduce a phase-coherent filter, called a directional filter, which has a theoretical coupling of 100 %. In order to study and compare different types of filter-banks, we first analyze the measured filter frequency scatter, losses, and spectral resolution of a DESHIMA 2.0 filter-bank chip. Based on measured fabrication tolerances and losses, we adapt the input parameters for our circuit simulations, quantitatively reproducing the measurements. We find that the frequency scatter is caused by nanometer-scale line width variations and that variances in the spectral resolution is caused by losses in the dielectric only. Finally, we include these realistic parameters in a full filter-bank model and simulate a wide range of spectral resolutions and oversampling values. For all cases, the directional filter-bank has significantly higher coupling to the detectors than the half-wave resonator filter-bank. The directional filter eliminates the need to use oversampling as a method to improve the total efficiency, instead capturing nearly all the power remaining after dielectric losses.
Terahertz Band-Pass Filters for Wideband Superconducting On-chip Filter-bank Spectrometers
A superconducting microstrip half-wavelength resonator is proposed as a suitable band-pass filter for broadband moderate spectral resolution spectroscopy for terahertz (THz) astronomy. The proposed filter geometry has a free spectral range of an octave of bandwidth without introducing spurious resonances, reaches a high coupling efficiency in the pass-band and shows very high rejection in the stop-band to minimize reflections and cross-talk with other filters. A spectrally sparse prototype filter-bank in the band 300-400 GHz has been developed employing these filters as well as an equivalent circuit model to anticipate systematic errors. The fabricated chip has been characterized in terms of frequency response, reporting an average peak coupling efficiency of 27% with an average spectral resolution of 940.
DESHIMA 2.0: Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations
Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the development of DESHIMA 2.0, an ISS for ultra-wideband spectroscopy toward high-redshift galaxies. DESHIMA 2.0 is designed to observe the 220–440 GHz band in a single shot, corresponding to a redshift range of z  = 3.3–7.6 for the ionized carbon emission ([C II] 158  μ m). The first-light experiment of DESHIMA 1.0, using the 332–377 GHz band, has shown an excellent agreement among the on-sky measurements, the laboratory measurements, and the design. As a successor to DESHIMA 1.0, we plan the commissioning and the scientific observation campaign of DESHIMA 2.0 on the ASTE 10-m telescope in 2023. Ongoing upgrades for the full octave-bandwidth system include the wideband 347-channel chip design and the wideband quasi-optical system. For efficient measurements, we also develop the observation strategy using the mechanical fast sky-position chopper and the sky-noise removal technique based on a novel data-scientific approach. In the paper, we show the recent status of the upgrades and the plans for the scientific observation campaign.
Simulating the radiation loss of superconducting submillimeter wave filters and transmission lines using Sonnet EM
Superconducting resonators and transmission lines are fundamental building blocks of integrated circuits for millimeter-submillimeter astronomy. Accurate simulation of radiation loss from the circuit is crucial for the design of these circuits because radiation loss increases with frequency, and can thereby deteriorate the system performance. Here we show a stratification for a 2.5-dimensional method-of-moment simulator Sonnet EM that enables accurate simulations of the radiative resonant behavior of submillimeter-wave coplanar resonators and straight coplanar waveguides (CPWs). The Sonnet simulation agrees well with the measurement of the transmission through a coplanar resonant filter at 374.6 GHz. Our Sonnet stratification utilizes artificial lossy layers below the lossless substrate to absorb the radiation, and we use co-calibrated internal ports for de-embedding. With this type of stratification, Sonnet can be used to model superconducting millimeter-submillimeter wave circuits even when radiation loss is a potential concern.
DESHIMA 2.0: development of an integrated superconducting spectrometer for science-grade astronomical observations
Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here we present the development of DESHIMA 2.0, an ISS for ultra-wideband spectroscopy toward high-redshift galaxies. DESHIMA 2.0 is designed to observe the 220-440 GHz band in a single shot, corresponding to a redshift range of \\(z\\)=3.3-7.6 for the ionized carbon emission ([C II] 158 \\(\\mu\\)m). The first-light experiment of DESHIMA 1.0, using the 332-377 GHz band, has shown an excellent agreement among the on-sky measurements, the lab measurements, and the design. As a successor to DESHIMA 1.0, we plan the commissioning and the scientific observation campaign of DESHIMA 2.0 on the ASTE 10-m telescope in 2023. Ongoing upgrades for the full octave-bandwidth system include the wideband 347-channel chip design and the wideband quasi-optical system. For efficient measurements, we also develop the observation strategy using the mechanical fast sky-position chopper and the sky-noise removal technique based on a novel data-scientific approach. In the paper, we show the recent status of the upgrades and the plans for the scientific observation campaign.
DESHIMA on ASTE: On-Sky Responsivity Calibration of the Integrated Superconducting Spectrometer
We are developing an ultra-wideband spectroscopic instrument, DESHIMA (DEep Spectroscopic HIgh-redshift MApper), based on the technologies of an on-chip filter bank and microwave kinetic inductance detector (MKID) to investigate dusty starburst galaxies in the distant universe at millimeter and submillimeter wavelengths. An on-site experiment of DESHIMA was performed using the ASTE 10-m telescope. We established a responsivity model that converts frequency responses of the MKIDs to line-of-sight brightness temperature. We estimated two parameters of the responsivity model using a set of skydip data taken under various precipitable water vapor (PWV 0.4–3.0 mm) conditions for each MKID. The line-of-sight brightness temperature of sky is estimated using an atmospheric transmission model and the PWVs. As a result, we obtain an average temperature calibration uncertainty of 1 σ = 4 %, which is smaller than other photometric biases. In addition, the average forward efficiency of 0.88 in our responsivity model is consistent with the value expected from the geometrical support structure of the telescope. We also estimate line-of-sight PWVs of each skydip observation using the frequency response of MKIDs and confirm the consistency with PWVs reported by the Atacama Large Millimeter/submillimeter Array.
TiEMPO: Open-source time-dependent end-to-end model for simulating ground-based submillimeter astronomical observations
The next technological breakthrough in millimeter-submillimeter astronomy is 3D imaging spectrometry with wide instantaneous spectral bandwidths and wide fields of view. The total optimization of the focal-plane instrument, the telescope, the observing strategy, and the signal-processing software must enable efficient removal of foreground emission from the Earth's atmosphere, which is time-dependent and highly nonlinear in frequency. Here we present TiEMPO: Time-Dependent End-to-End Model for Post-process Optimization of the DESHIMA Spectrometer. TiEMPO utilizes a dynamical model of the atmosphere and parametrized models of the astronomical source, the telescope, the instrument, and the detector. The output of TiEMPO is a time-stream of sky brightness temperature and detected power, which can be analyzed by standard signal-processing software. We first compare TiEMPO simulations with an on-sky measurement by the wideband DESHIMA spectrometer and find good agreement in the noise power spectral density and sensitivity. We then use TiEMPO to simulate the detection of a line emission spectrum of a high-redshift galaxy using the DESHIMA 2.0 spectrometer in development. The TiEMPO model is open source. Its modular and parametrized design enables users to adapt it to design and optimize the end-to-end performance of spectroscopic and photometric instruments on existing and future telescopes.