Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
22
result(s) for
"Pashami, Sepideh"
Sort by:
Semi-Supervised Learning for Forklift Activity Recognition from Controller Area Network (CAN) Signals
2022
Machine Activity Recognition (MAR) can be used to monitor manufacturing processes and find bottlenecks and potential for improvement in production. Several interesting results on MAR techniques have been produced in the last decade, but mostly on construction equipment. Forklift trucks, which are ubiquitous and highly important industrial machines, have been missing from the MAR research. This paper presents a data-driven method for forklift activity recognition that uses Controller Area Network (CAN) signals and semi-supervised learning (SSL). The SSL enables the utilization of large quantities of unlabeled operation data to build better classifiers; after a two-step post-processing, the recognition results achieve balanced accuracy of 88% for driving activities and 95% for load-handling activities on a hold-out data set. In terms of the Matthews correlation coefficient for five activity classes, the final score is 0.82, which is equal to the recognition results of two non-domain experts who use videos of the activities. A particular success is that context can be used to capture the transport of small weight loads that are not detected by the forklift’s built-in weight sensor.
Journal Article
AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control
by
Aksoy, Eren Erdal
,
Åstrand, Björn
,
Englund, Cristofer
in
Advanced driver assistance systems
,
Annotations
,
Artificial intelligence
2021
Smart cities and communities (SCC) constitute a new paradigm in urban development. SCC ideate a data-centered society aimed at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with Internet of Things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, smart traffic control and driver modeling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, availability of data from different stakeholders is necessary. Further, though AI technologies provide accurate predictions and classifications, there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability: models can have difficulty explaining how they came to certain conclusions, so it is difficult for humans to trust them.
Journal Article
Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors
by
Lilienthal, Achim
,
Trincavelli, Marco
,
Pashami, Sepideh
in
Algorithms
,
Arrays
,
change point detection
2012
We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets.
Journal Article
Early Prediction of Quality Issues in Automotive Modern Industry
by
Khoshkangini, Reza
,
Berck, Peter
,
Pashami, Sepideh
in
fault detection
,
machine learning
,
predictive maintenance
2020
Many industries today are struggling with early the identification of quality issues, given the shortening of product design cycles and the desire to decrease production costs, coupled with the customer requirement for high uptime. The vehicle industry is no exception, as breakdowns often lead to on-road stops and delays in delivery missions. In this paper we consider quality issues to be an unexpected increase in failure rates of a particular component; those are particularly problematic for the original equipment manufacturers (OEMs) since they lead to unplanned costs and can significantly affect brand value. We propose a new approach towards the early detection of quality issues using machine learning (ML) to forecast the failures of a given component across the large population of units. In this study, we combine the usage information of vehicles with the records of their failures. The former is continuously collected, as the usage statistics are transmitted over telematics connections. The latter is based on invoice and warranty information collected in the workshops. We compare two different ML approaches: the first is an auto-regression model of the failure ratios for vehicles based on past information, while the second is the aggregation of individual vehicle failure predictions based on their individual usage. We present experimental evaluations on the real data captured from heavy-duty trucks demonstrating how these two formulations have complementary strengths and weaknesses; in particular, they can outperform each other given different volumes of the data. The classification approach surpasses the regressor model whenever enough data is available, i.e., once the vehicles are in-service for a longer time. On the other hand, the regression shows better predictive performance with a smaller amount of data, i.e., for vehicles that have been deployed recently.
Journal Article
TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors
by
Lilienthal, Achim
,
Schaffernicht, Erik
,
Trincavelli, Marco
in
2-Propanol - analysis
,
2-Propanol - chemistry
,
Algorithms
2013
Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time.
Journal Article
A Knowledge-Based AI Framework for Mobility as a Service
by
Wajid, Summrina
,
Nowaczyk, Sławomir
,
Ebby, Geethu Susan
in
Algorithms
,
Artificial intelligence
,
Data collection
2023
Mobility as a Service (MaaS) combines various modes of transportation to present mobility services to travellers based on their transport needs. This paper proposes a knowledge-based framework based on Artificial Intelligence (AI) to integrate various mobility data types and provide travellers with customized services. The proposed framework includes a knowledge acquisition process to extract and structure data from multiple sources of information (such as mobility experts and weather data). It also adds new information to a knowledge base and improves the quality of previously acquired knowledge. We discuss how AI can help discover knowledge from various data sources and recommend sustainable and personalized mobility services with explanations. The proposed knowledge-based AI framework is implemented using a synthetic dataset as a proof of concept. Combining different information sources to generate valuable knowledge is identified as one of the challenges in this study. Finally, explanations of the proposed decisions provide a criterion for evaluating and understanding the proposed knowledge-based AI framework.
Journal Article
Stacked Ensemble of Recurrent Neural Networks for Predicting Turbocharger Remaining Useful Life
by
Mashhadi, Peyman Sheikholharam
,
Nowaczyk, Sławomir
,
Pashami, Sepideh
in
Automobiles
,
Case studies
,
Datasets
2020
Predictive Maintenance (PM) is a proactive maintenance strategy that tries to minimize a system’s downtime by predicting failures before they happen. It uses data from sensors to measure the component’s state of health and make forecasts about its future degradation. However, existing PM methods typically focus on individual measurements. While it is natural to assume that a history of measurements carries more information than a single one. This paper aims at incorporating such information into PM models. In practice, especially in the automotive domain, diagnostic models have low performance, due to a large amount of noise in the data and limited sensing capability. To address this issue, this paper proposes to use a specific type of ensemble learning known as Stacked Ensemble. The idea is to aggregate predictions of multiple models—consisting of Long Short-Term Memory (LSTM) and Convolutional-LSTM—via a meta model, in order to boost performance. Stacked Ensemble model performs well when its base models are as diverse as possible. To this end, each such model is trained using a specific combination of the following three aspects: feature subsets, past dependency horizon, and model architectures. Experimental results demonstrate benefits of the proposed approach on a case study of heavy-duty truck turbochargers.
Journal Article
The Concordance Index decomposition: A measure for a deeper understanding of survival prediction models
by
Ohlsson, Mattias
,
Alabdallah, Abdallah
,
Pashami, Sepideh
in
Decomposition
,
Neural networks
,
Prediction models
2024
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events.
Component attention network for multimodal dance improvisation recognition
2023
Dance improvisation is an active research topic in the arts. Motion analysis of improvised dance can be challenging due to its unique dynamics. Data-driven dance motion analysis, including recognition and generation, is often limited to skeletal data. However, data of other modalities, such as audio, can be recorded and benefit downstream tasks. This paper explores the application and performance of multimodal fusion methods for human motion recognition in the context of dance improvisation. We propose an attention-based model, component attention network (CANet), for multimodal fusion on three levels: 1) feature fusion with CANet, 2) model fusion with CANet and graph convolutional network (GCN), and 3) late fusion with a voting strategy. We conduct thorough experiments to analyze the impact of each modality in different fusion methods and distinguish critical temporal or component features. We show that our proposed model outperforms the two baseline methods, demonstrating its potential for analyzing improvisation in dance.
Rolling the dice for better deep learning performance: A study of randomness techniques in deep neural networks
by
Mashhadi, Peyman Sheikholharam
,
Nowaczyk, Sławomir
,
Mohammed Ghaith Altarabichi
in
Artificial neural networks
,
Configurations
,
Correlation analysis
2024
This paper investigates how various randomization techniques impact Deep Neural Networks (DNNs). Randomization, like weight noise and dropout, aids in reducing overfitting and enhancing generalization, but their interactions are poorly understood. The study categorizes randomness techniques into four types and proposes new methods: adding noise to the loss function and random masking of gradient updates. Using Particle Swarm Optimizer (PSO) for hyperparameter optimization, it explores optimal configurations across MNIST, FASHION-MNIST, CIFAR10, and CIFAR100 datasets. Over 30,000 configurations are evaluated, revealing data augmentation and weight initialization randomness as main performance contributors. Correlation analysis shows different optimizers prefer distinct randomization types. The complete implementation and dataset are available on GitHub.