Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Pasinelli, Gilberto"
Sort by:
Behavioral Plasticity Allows Short‐Term Adjustment to a Novel Environment
Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species relying on acoustic communication. Recent evidence suggests that some species adjust their acoustic signals to man‐made noise. However, it is unknown whether these changes occur through short‐term and reversible adjustments by behavioral plasticity or through long‐term adaptations by evolutionary change. Using behavioral observations and playback experiments, we show that male reed buntings (Emberiza schoeniclus) adjusted their songs immediately, singing at a higher minimum frequency and at a lower rate when noise levels were high. Our data showed that these changes in singing behavior were short‐term adjustments of signal characteristics resulting from behavioral plasticity, rather than a long‐term adaptation. However, more males remained unpaired at a noisy location than at a quiet location throughout the breeding season. Thus, phenotypic plasticity enables individuals to respond to environmental changes, but whether these short‐term adjustments are beneficial remains to be seen.
Reproductive Performance of a Declining Forest Passerine in Relation to Environmental and Social Factors: Implications for Species Conservation
Identifying factors influencing a species' ecological niche and demography is a prerequisite for species conservation. However, our understanding of the interplay between demographic rates and biotic/abiotic factors is still poor for most species of conservation concern. We evaluated relevance of eight hypotheses relating to timing of breeding, temporal nest exposure, nest concealment, topography, tree structure, predation risk and disturbance, density dependence and weather for explaining variation in reproductive performance of the declining wood warbler Phylloscopus sibilatrix in northern Switzerland. Reproductive performance was monitored with cameras at 136 nests from 2010 to 2012 and was associated to temporal exposure, timing of breeding and concealment of nests. Daily nest survival was positively related to the number of grass and sedge tussocks, nest concealment and nest age. Clutch size and number of fledglings decreased, the later in the season a nest was initiated. Nest survival over an average nesting period of 31 days was 46.9 ± 0.07% (mean ± SE), daily nest survival rate was 0.976 ± 0.002. As for many ground-breeding birds, nest predation was the principal cause of nest failure, accounting for 79% of all nest losses. Conservation measures should aim at increasing the area of relatively homogenous forest stands featuring suitable habitats characterized by abundant and accessible grass and sedge tussocks. In managed forests, such conditions can be found in stands of middle age (i.e. pole wood) with little to no shrub layer.
New support for an old hypothesis: density affects extra‐pair paternity
Density has been suggested to affect variation in extra‐pair paternity (EPP) in avian mating systems, because increasing density promotes encounter rates and thus mating opportunities. However, the significance of density affecting EPP variation in intra‐ and interspecific comparisons has remained controversial, with more support from intraspecific comparisons. Neither experimental nor empirical studies have consistently provided support for the density hypothesis. Testing the density hypothesis is challenging because density measures may not necessarily reflect extra‐pair mating opportunities, mate guarding efforts may covary with density, populations studied may differ in migratory behavior and/or climatic conditions, and variation in density may be insufficient. Accounting for these potentially confounding factors, we tested whether EPP rates within and among subpopulations of the reed bunting (Emberiza schoeniclus) were related to density. Our analyses were based on data from 13 subpopulations studied over 4 years. Overall, 56.4% of totally 181 broods contained at least one extra‐pair young (EPY) and 37.1% of totally 669 young were of extra‐pair origin. Roughly 90% of the extra‐pair fathers were from the adjacent territory or from the territory after the next one. Within subpopulations, the proportion of EPY in broods was positively related to local breeding density. Similarly, among subpopulations, proportion of EPY was positively associated with population density. EPP was absent in subpopulations consisting of single breeding pairs, that is, without extra‐pair mating opportunities. Our study confirms that density is an important biological factor, which significantly influences the amount of EPP within and among subpopulations, but also suggests that other mechanisms influence EPP beyond the variation explained by density. Density has been suggested to affect variation in extra‐pair paternity (EPP) in avian mating systems, because increasing density promotes encounter rates and thus mating opportunities. Accounting for potentially confounding factors, we tested whether EPP rates within and among 13 subpopulations of the reed bunting (Emberiza schoeniclus) were related to density. Our study confirmed that density is an important biological factor, which significantly influences the amount of EPP within and among subpopulations.
Phenotypic and environmental correlates of natal dispersal movements in fragmented landscapes
ContextNatal dispersal critically influences eco-evolutionary dynamics and the persistence of spatially structured populations. As both short- and long-distance movements contribute to population persistence in fragmented landscapes, understanding dispersal requires assessing phenotypic and environmental effects on a wide range of distances.ObjectivesTo assess phenotypic and environmental correlates of dispersal movements in fragmented landscapes.MethodsWe radio-tracked juvenile middle spotted woodpeckers in fragmented landscapes to assess phenotypic and environmental effects on emigration age, transfer duration (in days), and transfer distances.ResultsLarge fledglings and those in good condition emigrated earlier than smaller individuals and those in worse condition. Birds in better condition also reduced transfer duration. Overall, females dispersed earlier, remained shorter at transfer and moved further than males. However, while females increased transfer distances with increasing connectivity, males increased distances with decreasing connectivity. Emigration age increased with decreasing patch size and increasing patch quality, and with decreasing population density in patches with soft edges. Both transfer duration and distance increased with decreasing population density.ConclusionsThe correlations between phenotypic traits of fledglings and their posterior movements suggest that early-life conditions influenced dispersal through carry-over effects. Early emigration from low-quality and high-populated patches can be a behavioural mechanism to quickly escape adverse natal conditions, but population density effects were modulated by edge hardness. Finally, because reductions in connectivity led to similar transfer distances between sexes through a reduction in female distances, a lack of sex-biased dispersal can be a previously overlooked effect of habitat isolation that may alter eco-evolutionary dynamics.
Genetic diversity and spatial genetic structure support the specialist-generalist variation hypothesis in two sympatric woodpecker species
Species are often arranged along a continuum from “specialists” to “generalists”. Specialists typically use fewer resources, occur in more patchily distributed habitats and have overall smaller population sizes than generalists. Accordingly, the specialist-generalist variation hypothesis (SGVH) proposes that populations of habitat specialists have lower genetic diversity and are genetically more differentiated due to reduced gene flow compared to populations of generalists. Here, expectations of the SGVH were tested by examining genetic diversity, spatial genetic structure and contemporary gene flow in two sympatric woodpecker species differing in habitat specialization. Compared to the generalist great spotted woodpecker (Dendrocopos major), lower genetic diversity was found in the specialist middle spotted woodpecker (Dendrocoptes medius). Evidence for recent bottlenecks was revealed in some populations of the middle spotted woodpecker, but in none of the great spotted woodpecker. Substantial spatial genetic structure and a significant correlation between genetic and geographic distances were found in the middle spotted woodpecker, but only weak spatial genetic structure and no significant correlation between genetic and geographic distances in the great spotted woodpecker. Finally, estimated levels of contemporary gene flow did not differ between the two species. Results are consistent with all but one expectations of the SGVH. This study adds to the relatively few investigations addressing the SGVH in terrestrial vertebrates.
Estimating Population Size for Capercaillie (Tetrao urogallus L.) with Spatial Capture-Recapture Models Based on Genotypes from One Field Sample
We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded a total population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130-147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54-0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.
Reproductive success of the wood warbler Phylloscopus sibilatrix varies across Europe
Differences in population trends across a species' breeding range are ultimately linked to variation in demographic rates. In small songbirds, demographic rates related to fecundity typically have strong effects on population trends. Populations of a forest songbird, the wood warbler Phylloscopus sibilatrix, have been declining in many but not all regions of the European breeding range. We investigated if clutch size, hatching rate, nest survival and number of fledglings vary across Europe, and if nest survival is related to differences in the regionally dominant nest predator class (birds versus mammals). From 2009 to 2020, we monitored 1896 nests and used cameras at a subsample of 645 nests in six study regions: the United Kingdom (mid‐Wales, Dartmoor, the New Forest), Germany (Hessen), Switzerland (Jura mountains) and Poland (Białowieża National Park). Number of fledglings was lowest in the New Forest (1.43 ± CI 0.23), intermediate in Jura (2.41 ± 0.31) and Białowieża (2.26 ± 0.24) and highest in mid‐Wales (3.02 ± 0.48) and Dartmoor (2.92 ± 0.32). The reason for low reproductive success in the New Forest, Jura and Białowieża was low nest survival, and large clutch sizes in Białowieża did not compensate for high nest losses. High reproductive success in mid‐Wales and Dartmoor was due to high nest survival and large clutch sizes. Overall predation rates were similar everywhere despite variation between the regions in the dominant nest predator class. Unsuccessful nests in mid‐Wales were mainly predated by birds; in Dartmoor, the New Forest, Hessen and Jura similarly by birds and mammals; and in Białowieża exclusively by mammals. Regional reproductive success does not match the population trends recently reported for the wood warbler in the six study regions (i.e. high reproduction ≠ positive trend). Annual survival may be a decisive factor, but it is difficult to quantify for a nomadic species such as the wood warbler that rarely returns to the same breeding locations.
Accounting for predator species identity reveals variable relationships between nest predation rate and habitat in a temperate forest songbird
Nest predation is the primary cause of nest failure in most ground‐nesting bird species. Investigations of relationships between nest predation rate and habitat usually pool different predator species. However, such relationships likely depend on the specific predator involved, partly because habitat requirements vary among predator species. Pooling may therefore impair our ability to identify conservation‐relevant relationships between nest predation rate and habitat. We investigated predator‐specific nest predation rates in the forest‐dependent, ground‐nesting wood warbler Phylloscopus sibilatrix in relation to forest area and forest edge complexity at two spatial scales and to the composition of the adjacent habitat matrix. We used camera traps at 559 nests to identify nest predators in five study regions across Europe. When analyzing predation data pooled across predator species, nest predation rate was positively related to forest area at the local scale (1000 m around nest), and higher where proportion of grassland in the adjacent habitat matrix was high but arable land low. Analyses by each predator species revealed variable relationships between nest predation rates and habitat. At the local scale, nest predation by most predators was higher where forest area was large. At the landscape scale (10,000 m around nest), nest predation by buzzards Buteo buteo was high where forest area was small. Predation by pine martens Martes martes was high where edge complexity at the landscape scale was high. Predation by badgers Meles meles was high where the matrix had much grassland but little arable land. Our results suggest that relationships between nest predation rates and habitat can depend on the predator species involved and may differ from analyses disregarding predator identity. Predator‐specific nest predation rates, and their relationships to habitat at different spatial scales, should be considered when assessing the impact of habitat change on avian nesting success. Studies about relationships between nest predation rate and habitat usually pool different predator species. However, such relationships likely depend on the specific predator involved, partly because habitat requirements vary among predator species. We show that accounting for predator species identity reveals variable relationships between nest predation rate and habitat in wood warblers.
Habitat Quality and Geometry Affect Patch Occupancy of Two Orthopteran Species
Impacts of habitat loss and fragmentation on distribution and population size of many taxa are well established. In contrast, less is known about the role of within-patch habitat quality for the spatial dynamics of species, even though within-patch habitat quality may substantially influence the dynamics of population networks. We studied occurrence patterns of two Orthopteran species in relation to size, isolation and quality of habitat patches in an intensively managed agricultural landscape (16.65 km(2)) in the Swiss lowland. Occurrence of field crickets (Gryllus campestris) was positively related to patch size and negatively to the distance to the nearest occupied patch, two measures of patch geometry. Moreover, field crickets were more likely to occur in extensively managed meadows, meadows used at low intensity and meadows dominated by Poa pratensis, three measures of patch quality. Occurrence of the large gold grasshopper (Chrysochraon dispar) was negatively related to two measures of patch geometry, distance to the nearest occupied patch and perimeter index (ratio of perimeter length to patch area). Further, large gold grasshoppers were more likely to occupy patches close to water and patches with vegetation left uncut over winter, two measures of patch quality. Finally, examination of patch occupancy dynamics of field crickets revealed that patches colonized in 2009 and patches occupied in both 2005 and 2009 were larger, better connected and of other quality than patches remaining unoccupied and patches from which the species disappeared. The strong relationships between Orthopteran occurrence and aspects of patch geometry found in this study support the \"area-and-isolation paradigm\". Additionally, our study reveals the importance of patch quality for occurrence patterns of both species, and for patch occupancy dynamics in the field cricket. An increased understanding of patch occupancy patterns may be gained if inference is based on variables related to both habitat geometry and quality.
Variation in singing style use in the reed bunting Emberiza schoeniclus: influencing factors and possible functions
The two main functions of bird song are territory defence and mate attraction. Considerable progress has been made in understanding how species adjust the use of songs to serve these and other (presumed) functions of bird song, but the striking variety of singing behavior observable in wild birds remains enigmatic. Some species make do with simple songs and small repertoires, while others show large, complex repertoires and still others have evolved several distinct singing styles. In most species with distinct singing styles, however, the functions of singing styles are poorly understood. Two distinct singing styles (type I and II, respectively) have long been known in the reed bunting Emberiza schoeniclus, while a new third one has recently been reported to exist. We first quantitatively investigated the evidence for the existence of three singing styles. Then, we tested predictions of the mate attraction hypothesis, the mate guarding hypothesis and the territory defence hypothesis by examining the relations between singing style use with social and temporal factors. Cluster and discriminant analyses supported the existence of three (instead of two) singing styles, which could be differentiated based on four variables referring to song structure and complexity. Use of singing styles was related to male mating status (consistent with the mate attraction hypothesis), but not to female breeding stage (no support for the mate guarding hypothesis). Finally, use of singing styles differed in relation to time of day, with the dawn chorus of paired reed buntings consisting almost exclusively of songs of the recently discovered type III singing style and daytime singing primarily consisting of songs of long-known type I (in unpaired males) or II singing styles (in paired males). Our findings suggest that one singing style (type I) primarily serves to attract a social mate, although an additional territorial function of this singing style cannot be dismissed. The function(s) of the other two singing styles, both only sung by paired males, are not related to attraction of a social mate or to the own female's fertility, but appear to be important in the context of territory defence and extra-pair matings.