Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Pathak Shashank"
Sort by:
Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening
by
Plekan Oksana
,
Holland David M P
,
Rouzée Arnaud
in
Adiabatic
,
Chemical reactions
,
Coupling (molecular)
2020
Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S–C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales.Photoinduced isomerization reactions, including ring-opening reactions, lie at the heart of many chemical processes in nature. The pathway and dynamics of the ring opening of a model heterocycle have now been investigated by femtosecond photoelectron spectroscopy combined with ab initio theory, enabling the visualization of rich dynamics in both the ground and excited electronic states.
Journal Article
Mechanisms and time-resolved dynamics for trihydrogen cation (H3+) formation from organic molecules in strong laser fields
2017
Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. We present evidence for the existence of two different reaction pathways for H
3
+
formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone.
Ab initio
molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followed by the abstraction of a proton from the remaining CHOH
2+
fragment by the roaming H
2
molecule. This reaction has similarities to the H
2
+ H
2
+
mechanism leading to formation of H
3
+
in the universe. These exotic chemical reaction mechanisms, involving roaming H
2
molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.
Journal Article
Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses
by
Laksman, Joakim
,
Usenko, Sergey
,
Meyer, Michael
in
639/624/1020/1087
,
639/766/36/1121
,
Atomic and molecular interactions with photons
2023
Understanding the interaction of intense, femtosecond X-ray pulses with heavy atoms is crucial for gaining insights into the structure and dynamics of matter. One key aspect of nonlinear light–matter interaction was, so far, not studied systematically at free-electron lasers—its dependence on the photon energy. Here, we use resonant ion spectroscopy to map out the transient electronic structures occurring during the complex charge-up pathways of xenon. Massively hollow atoms featuring up to six simultaneous core holes determine the spectra at specific photon energies and charge states. We also illustrate how different X-ray pulse parameters, which are usually intertwined, can be partially disentangled. The extraction of resonance spectra is facilitated by the possibility of working with a constant number of photons per X-ray pulse at all photon energies and the fact that the ion yields become independent of the peak fluence beyond a saturation point. Our study lays the groundwork for spectroscopic investigations of transient atomic species in exotic, multiple-core-hole states that have not been explored previously.
Intense light pulses can create nonlinear ionization processes in atoms and molecules. Here the authors study the photoionization of xenon atoms using intense free-electron laser pulses that can create extremely high charge states and produce hollow atoms, featuring up to six simultaneous core-holes.
Journal Article
Hydrogen migration in inner-shell ionized halogenated cyclic hydrocarbons
by
Dumitriu, Ileana
,
Berrah, Nora
,
Abid, Abdul Rahman
in
639/766/36
,
639/766/36/1121
,
639/766/94
2023
We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3
d
) and C(1
s
) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH
3
+
fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CH
x
+
fragments (with
x
= 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.
Journal Article
On seismic demand of near-field ground motions
2024
Near-fault ground motions (NFGM) may have a significant component of the long period velocity pulse (LPVP) due to the directivity effect. The structures subjected to such ground motions are prone to experience large displacements. In this paper, the damage potential of such motions is compared with NFGM (without LPVP) and far-field motions in terms of seismic demand (inter-storey drift and inelastic displacement). Due to the lack of site-specific recorded NFGM, the synthetic ground motions are generated and used in this study. For this purpose, first the bedrock motions are obtained through stochastic simulation approach in which the Specific Barrier Model (SBM) is used as source spectrum and then these motions are transferred to the ground surface using one-dimensional ground response analysis. In order to obtain the NFGM with pulse, the bedrock motions are superimposed with the LPVPs and then transferred to the ground surface. To illustrate, the case of a ten-storey reinforced concrete (RC) building is considered in Delhi region (India) which falls under the seismic zone-IV. The main finding of this study is the observation that the NFGM with LPVP impose almost double seismic demand compared to the NFGM without LPVP, specially for the structures lying in the velocity-region of the response spectrum. In this study, the effect of depth of bedrock on seismic demand is highlighted and recommended to be included in the design seismic demand of NFGM.
Journal Article
A Designer’s Approach for Estimation of Nuclear-Air-Blast-Induced Ground Motion
2018
A reliable estimate of free-field ground displacement induced by nuclear-air-blast is required for design of underground strategic structures. A generalized pseudostatic formulation is proposed to estimate nuclear-air-blast-induced ground displacement that takes into account nonlinear stress-strain behaviour of geomaterials, stress-dependent wave propagation velocity, and stress wave attenuation. This proposed formulation is utilized to develop a closed-form solution for linearly decaying blast load applied on a layered ground medium with bilinear hysteretic behaviour. Parametric studies of closed-form solution indicated that selection of appropriate constrained modulus consistent with the overpressure is necessary for an accurate estimation of peak ground displacement. Stress wave attenuation affects the computed displacement under low overpressure, and stress-dependent wave velocity affects mainly the occurrence time of peak displacement and not its magnitude. Further, peak displacements are estimated using the proposed model as well as the UFC manual and compared against the field data of atmospheric nuclear test carried out at Nevada test site. It is found that the proposed model is in good agreement with field data, whereas the UFC manual significantly underestimates the peak ground displacements under higher overpressures.
Journal Article
Verification and repair of control policies for safe reinforcement learning
by
Pulina, Luca
,
Tacchella, Armando
,
Pathak, Shashank
in
Machine learning
,
Policies
,
Probabilistic models
2018
Reinforcement Learning is a well-known AI paradigm whereby control policies of autonomous agents can be synthesized in an incremental fashion with little or no knowledge about the properties of the environment. We are concerned with safety of agents whose policies are learned by reinforcement, i.e., we wish to bound the risk that, once learning is over, an agent damages either the environment or itself. We propose a general-purpose automated methodology to verify, i.e., establish risk bounds, and repair policies, i.e., fix policies to comply with stated risk bounds. Our approach is based on probabilistic model checking algorithms and tools, which provide theoretical and practical means to verify risk bounds and repair policies. Considering a taxonomy of potential repair approaches tested on an artificially-generated parametric domain, we show that our methodology is also more effective than comparable ones.
Journal Article
A First Order Quantification of Effects of Uncertainties in Hydro-fracturing Parameters on Tunnel Ovalization Estimates
by
Pathak, Shashank
,
Ramana, Gondu Venkat
in
Civil Engineering
,
Earth and Environmental Science
,
Earth Sciences
2019
In-situ stresses are always present in rock-masses due to gravitational and tectonic forces. Excavation of a tunnel in such a pre-stressed media causes deformation of tunnel cross-section. Ovalization of tunnels due to in-situ stresses in rock-mass is an important design parameter. For estimation of tunnel ovalization, state of in-situ stresses needs to be determined first. In-situ stresses determined through hydro-fracturing technique (HFT) are dependent upon the three HFT parameters: (a) shut-in pressure, (b) re-opening pressure, and (c) fracture orientation. A critical review of previous studies indicates that HFT parameters are subjected to uncertainties due to (1) limitations of testing procedures and equipment, (2) assumptions and subjective engineering judgment associated with interpretation of test results, and (3) inherent variability of geological formations. Therefore, tunnel deformation estimates based on in-situ stresses determined through HFT would also be affected by these uncertainties. In this paper, a framework based on the first-order second moment method is developed to evaluate the effects of uncertainties in hydro-fracturing test data on tunnel deformation. The analysis indicates that uncertainty in tunnel deformation depends upon the uncertainty levels as well as magnitude of the three HFT parameters along with Poisson’s ratio, height of overburden, and the angular location of the point on the tunnel periphery where deformation is being estimated. It is also found that among the three parameters, the shut-in pressure has the maximum relative contribution in the resulting uncertainties in tunnel ovalization with an average of 68% (± 8% standard deviation). The proposed methodology is explained through an example case-study from Bukit Timah Granite rock-mass of Singapore. It is found that for a range of coefficient of variation of shut-in and re-opening pressure from 0 to 50%, the maximum coefficient of variation of tunnel deformation varies between 63 and 332%. In view of such high uncertainties, it is recommended that uncertainties of HFT parameters must be taken into account in the design procedure to avoid unsound engineering judgments.
Journal Article
Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
2024
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
Light-induced ultrafast switching between the molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Two competing pathways have now been identified by which electronically excited quadricyclane molecules relax to the electronic ground state, facilitating interconversion between the two isomers on different timescales.
Journal Article
Isomerization and Fragmentation of Polyatomic Molecules Induced by Ultraviolet and Extreme UV Light
by
Pathak, Shashank
in
Physics
2021
Imaging molecular structures evolving at their natural timescales, during a chemical reaction, with an atomic-scale resolution has been a long-standing goal for physicists and chemists. With the recent developments in experimental techniques, as well as the light sources, such as synchrotron radiation sources, free-electron lasers (FELs), ultrafast lasers, and high-harmonic sources, it is now possible to study the molecular dynamics and structural changes with femtosecond (in some cases attosecond) time-resolution, for near-infrared to x-ray wavelengths. These advancements are particularly useful in studying a wide range of photoinduced chemical reactions and photoinduced fragmentation. In this thesis, some of the advanced techniques are used to study photoinduced isomerization and fragmentation. This thesis also partly focuses on developing the tools and techniques which can be used to study these molecular structural changes. Several molecular systems are studied throughout the thesis. Some of them are studied with the goal of understanding the chemistry post photoexcitation and photo-fragmentation, while others were aiming for method development for future experiments. Specifically, some of the experiments are performed on a prototypical heterocyclic ring molecule, thiophenone. One such experiment studies photochemistry after ultraviolet light absorption, using time-resolved photoelectron spectroscopy at a free-electron laser. The experimental results are combined with ab-initio molecular dynamics and electronic structure calculation for the ground state and excited state molecules, which revealed insights about the electronic and nuclear dynamics. Ring-opening is the most dominant process upon photoexcitation, driven by a ballistic extension of C-S bond, and is completed within $\\sim$350 fs. The ground state trajectories also confirm the formation of three ring-opened products, providing detailed insights into this reaction. Ring-opening reactions of similar types are considered as candidates for designing fast molecular switches. In another study, the fragmentation pathways of thiophenone are studied using ion-electron coincidence experiments. With these experiments, it is observed that some of the fragmentation pathways may be decoupled purely based upon the photoelectron energy, which is also a measure of the internal energy of an ion. Another method, which is often used to study dissociation, fragmentation, and isomerization pathways, is coincident ion momentum imaging. The sensitivity of this method in distinguishing similar-looking structures is demonstrated by distinguishing conformational isomers of 1,2-dibromoethane, which only differ by a rotation around a single bond and coexist in a particular ratio at any given temperature. Sequential and concerted breakup pathways were disentangled using a newly developed Native frames method to obtain information about the initial molecular geometry. These experiments may trigger future time-resolved studies to monitor subtle molecular structural changes using coincidence ion momentum imaging.The work presented in this thesis uses a wide variety of techniques to understand light-induced isomerization and fragmentation dynamics, from simple molecules to moderately complex systems. This work contributes to the understanding developed for the prototypical systems, which may help formulate general principles underlying some light-induced reactions and processes.
Dissertation