Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
165 result(s) for "Patil, Shruti"
Sort by:
A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.
Data augmentation using Variational Autoencoders for improvement of respiratory disease classification
Computerized auscultation of lung sounds is gaining importance today with the availability of lung sounds and its potential in overcoming the limitations of traditional diagnosis methods for respiratory diseases. The publicly available ICBHI respiratory sounds database is severely imbalanced, making it difficult for a deep learning model to generalize and provide reliable results. This work aims to synthesize respiratory sounds of various categories using variants of Variational Autoencoders like Multilayer Perceptron VAE (MLP-VAE), Convolutional VAE (CVAE) Conditional VAE and compare the influence of augmenting the imbalanced dataset on the performance of various lung sound classification models. We evaluated the quality of the synthetic respiratory sounds’ quality using metrics such as Fréchet Audio Distance (FAD), Cross-Correlation and Mel Cepstral Distortion. Our results showed that MLP-VAE achieved an average FAD of 12.42 over all classes, whereas Convolutional VAE and Conditional CVAE achieved an average FAD of 11.58 and 11.64 for all classes, respectively. A significant improvement in the classification performance metrics was observed upon augmenting the imbalanced dataset for certain minority classes and marginal improvement for the other classes. Hence, our work shows that deep learning-based lung sound classification models are not only a promising solution over traditional methods but can also achieve a significant performance boost upon augmenting an imbalanced training set.
Applying and Understanding an Advanced, Novel Deep Learning Approach: A Covid 19, Text Based, Emotions Analysis Study
The pandemic COVID 19 has altered individuals’ daily lives across the globe. It has led to preventive measures such as physical distancing to be imposed on individuals and led to terms such as ‘lockdown,’ ‘emergency,’ or curfew’ to emerge in various countries. It has affected society, not only physically and financially, but in terms of emotional wellbeing as well. This distress in the human emotional quotient results from multiple factors such as financial implications, family member’s behavior and support, country-specific lockdown protocols, media influence, or fear of the pandemic. For efficient pandemic management, there is a need to understand the emotional variations among individuals, as this will provide insights into public sentiment towards various government pandemic management policies. From our investigations, it was found that individuals have increasingly used different microblogging platforms such as Twitter to remain connected and express their feelings and concerns during the pandemic. However, research in the area of expressed emotional wellbeing during COVID 19 is still growing, which motivated this team to form the aim: To identify, explore and understand globally the emotions expressed during the earlier months of the pandemic COVID 19 by utilizing Deep Learning and Natural language Processing (NLP). For the data collection, over 2 million tweets during February–June 2020 were collected and analyzed using an advanced deep learning technique of Transfer Learning and Robustly Optimized BERT Pretraining Approach (RoBERTa). A Reddit-based standard Emotion Dataset by Crowdflower was utilized for transfer learning. Using RoBERTa and the collated Twitter dataset, a multi-class emotion classifier system was formed. With the implemented methodology, a tweet classification accuracy of 80.33% and an average MCC score of 0.78 was achieved, improving the existing AI-based emotion classification methods. This study explains the novel application of the Roberta model during the pandemic that provided insights into changing emotional wellbeing over time of various citizens worldwide. It also offers novelty for data mining and analytics during this challenging, pandemic era. These insights can be beneficial for formulating effective pandemic management strategies and devising a novel, predictive strategy for the emotional well-being of an entire country’s citizens when facing future unexpected exogenous shocks.
A Low-Cost Multi-Sensor Data Acquisition System for Fault Detection in Fused Deposition Modelling
Fused deposition modelling (FDM)-based 3D printing is a trending technology in the era of Industry 4.0 that manufactures products in layer-by-layer form. It shows remarkable benefits such as rapid prototyping, cost-effectiveness, flexibility, and a sustainable manufacturing approach. Along with such advantages, a few defects occur in FDM products during the printing stage. Diagnosing defects occurring during 3D printing is a challenging task. Proper data acquisition and monitoring systems need to be developed for effective fault diagnosis. In this paper, the authors proposed a low-cost multi-sensor data acquisition system (DAQ) for detecting various faults in 3D printed products. The data acquisition system was developed using an Arduino micro-controller that collects real-time multi-sensor signals using vibration, current, and sound sensors. The different types of fault conditions are referred to introduce various defects in 3D products to analyze the effect of the fault conditions on the captured sensor data. Time and frequency domain analyses were performed on captured data to create feature vectors by selecting the chi-square method, and the most significant features were selected to train the CNN model. The K-means cluster algorithm was used for data clustering purposes, and the bell curve or normal distribution curve was used to define individual sensor threshold values under normal conditions. The CNN model was used to classify the normal and fault condition data, which gave an accuracy of around 94%, by evaluating the model performance based on recall, precision, and F1 score.
ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load
The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway. Glaucoma is the leading cause of irreversible blindness affecting over 70 million people worldwide. Here, the authors show that inhibition of chronic ER stress-induced ATF4-CHOP-GADD34 signaling pathway rescues pathology in mouse models of glaucoma, thus suggesting a possible treatment strategy.
Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease
In recent times, technologies such as machine learning and deep learning have played a vital role in providing assistive solutions to a medical domain’s challenges. They also improve predictive accuracy for early and timely disease detection using medical imaging and audio analysis. Due to the scarcity of trained human resources, medical practitioners are welcoming such technology assistance as it provides a helping hand to them in coping with more patients. Apart from critical health diseases such as cancer and diabetes, the impact of respiratory diseases is also gradually on the rise and is becoming life-threatening for society. The early diagnosis and immediate treatment are crucial in respiratory diseases, and hence the audio of the respiratory sounds is proving very beneficial along with chest X-rays. The presented research work aims to apply Convolutional Neural Network based deep learning methodologies to assist medical experts by providing a detailed and rigorous analysis of the medical respiratory audio data for Chronic Obstructive Pulmonary detection. In the conducted experiments, we have used a Librosa machine learning library features such as MFCC, Mel-Spectrogram, Chroma, Chroma (Constant-Q) and Chroma CENS. The presented system could also interpret the severity of the disease identified, such as mild, moderate, or acute. The investigation results validate the success of the proposed deep learning approach. The system classification accuracy has been enhanced to an ICBHI score of 93%. Furthermore, in the conducted experiments, we have applied K-fold Cross-Validation with ten splits to optimize the performance of the presented deep learning approach.
Blockchain for securing AI applications and open innovations
Nowadays, open innovations such as intelligent automation and digitalization are being adopted by every industry with the help of powerful technology such as Artificial Intelligence (AI). This evolution drives systematic running processes, involves less overhead of managerial activities and increased production rate. However, it also gave birth to different kinds of attacks and security issues at the data storage level and process level. The real-life implementation of such AI-enabled intelligent systems is currently plagued by the lack of security and trust levels in system predictions. Blockchain is a prevailing technology that can help to alleviate the security risks of AI applications. These two technologies are complementing each other as Blockchain can mitigate vulnerabilities in AI, and AI can improve the performance of Blockchain. Many studies are currently being conducted on the applicability of Blockchains for securing intelligent applications in various crucial domains such as healthcare, finance, energy, government, and defense. However, this domain lacks a systematic study that can offer an overarching view of research activities currently going on in applying Blockchains for securing AI-based systems and improving their robustness. This paper presents a bibliometric and literature analysis of how Blockchain provides a security blanket to AI-based systems. Two well-known research databases (Scopus and Web of Science) have been examined for this analytical study and review. The research uncovered that idea proposals in conferences and some articles published in journals make a major contribution. However, there is still a lot of research work to be done to implement real and stable Blockchain-based AI systems.
AI Based Emotion Detection for Textual Big Data: Techniques and Contribution
Online Social Media (OSM) like Facebook and Twitter has emerged as a powerful tool to express via text people’s opinions and feelings about the current surrounding events. Understanding the emotions at the fine-grained level of these expressed thoughts is important for system improvement. Such crucial insights cannot be completely obtained by doing AI-based big data sentiment analysis; hence, text-based emotion detection using AI in social media big data has become an upcoming area of Natural Language Processing research. It can be used in various fields such as understanding expressed emotions, human–computer interaction, data mining, online education, recommendation systems, and psychology. Even though the research work is ongoing in this domain, it still lacks a formal study that can give a qualitative (techniques used) and quantitative (contributions) literature overview. This study has considered 827 Scopus and 83 Web of Science research papers from the years 2005–2020 for the analysis. The qualitative review represents different emotion models, datasets, algorithms, and application domains of text-based emotion detection. The quantitative bibliometric review of contributions presents research details such as publications, volume, co-authorship networks, citation analysis, and demographic research distribution. In the end, challenges and probable solutions are showcased, which can provide future research directions in this area.
Enhancing Surface Fault Detection Using Machine Learning for 3D Printed Products
In the era of Industry 4.0, the idea of 3D printed products has gained momentum and is also proving to be beneficial in terms of financial and time efforts. These products are physically built layer-by-layer based on the digital Computer Aided Design (CAD) inputs. Nonetheless, 3D printed products are still subjected to defects due to variation in properties and structure, which leads to deterioration in the quality of printed products. Detection of these errors at each layer level of the product is of prime importance. This paper provides the methodology for layer-wise anomaly detection using an ensemble of machine learning algorithms and pre-trained models. The proposed combination is trained offline and implemented online for fault detection. The current work provides an experimental comparative study of different pre-trained models with machine learning algorithms for monitoring and fault detection in Fused Deposition Modelling (FDM). The results showed that the combination of the Alexnet and SVM algorithm has given the maximum accuracy. The proposed fault detection approach has low experimental and computing costs, which can easily be implemented for real-time fault detection.
Integrating transfer learning with scalogram analysis for blood pressure estimation from PPG signals
The blood pressure (BP) estimation plays a crucial role in assessing cardiovascular health and preventing related complications. One of the early warning indicators for heart disorders is elevated blood pressure. Thus, monitoring of blood pressure continuously is needed. The study aims to develop and validate a reliable deep learning-based approach for blood pressure estimation using photoplethysmography from the publicly available database MIMIC-II. The continuous wavelet transform (CWT) was used to transform the photoplethysmogram (PPG) signals into scalograms, which were then input into six different deep learning models: VGG16, ResNet50, InceptionV3, NASNetLarge, InceptionResNetV2 and ConvNeXtTiny. The obtained deep features from each one of these models were employed to estimate BP values using random forest. The proposed approach uses a unique transfer learning framework that integrates deep feature extraction from scalograms with random forest regression, providing a new pathway for blood pressure estimation. The models were assessed using mean absolute error (MAE) and standard deviation (SD) in estimating the systolic and diastolic blood pressure values. Out of six models, ConvNeXtTiny and VGG16 showed good performance. ConvNeXtTiny achieved mean absolute error of 2.95 mmHg and standard deviation of 4.11 mmHg for systolic blood pressure and mean absolute error of 1.66 mmHg and standard deviation of 2.60 mmHg for diastolic blood pressure. The achieved result complies with the clinical standards set by Advancement of Medical Instrumentation Standard (AAMI) and the British Hypertension Society standard (BHS). This can enhance cardiovascular health monitoring with continuous, non-invasive and reliable blood pressure measurement, assisting in early detection of the disease. The suggested method shows that reliable blood pressure estimation from photoplethysmography signals is possible with the use of deep learning and transfer learning. Above all, ConvNeXtTiny offers a dependable method for continuous blood pressure monitoring that satisfies clinical requirements and may help in the early identification of cardiovascular problems.