Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
49
result(s) for
"Patras, Kathryn A."
Sort by:
Strengthening of enterococcal biofilms by Esp
by
Ghosh, Partho
,
Tezcan, F. Akif
,
Tsutakawa, Susan E.
in
Amyloid
,
Bacteria
,
Bacterial Proteins - metabolism
2022
Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E . faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.
Journal Article
Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women
by
Spencer, Brady L.
,
Runft, Donna L.
,
Burcham, Lindsey R.
in
Antibacterial agents
,
Antibiotic resistance
,
Antibiotics
2019
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-positive bacterium isolated from the vaginal tract of approximately 25% of women. GBS colonization of the female reproductive tract is of particular concern during pregnancy as the bacteria can invade gestational tissues or be transmitted to the newborn during passage through the birth canal. Infection of the neonate can result in life-threatening pneumonia, sepsis and meningitis. Thus, surveillance of GBS strains and corresponding virulence potential during colonization is warranted. Here we describe a panel of GBS isolates from the vaginal tracts of a cohort of pregnant women in Michigan, USA. We determined that capsular serotypes III and V were the most abundant across the strain panel, with only one isolate belonging to serotype IV. Further, 12.8% of strains belonged to the hyper-virulent serotype III, sequence type 17 (ST-17) and 15.4% expressed the serine rich repeat glycoprotein-encoding gene srr2. Functional assessment of the colonizing isolates revealed that almost all strains exhibited some level of β-hemolytic activity and that ST-17 strains, which express Srr2, exhibited increased bacterial adherence to vaginal epithelium. Finally, analysis of strain antibiotic susceptibility revealed the presence of antibiotic resistance to penicillin (15.4%), clindamycin (30.8%), erythromycin (43.6%), vancomycin (30.8%), and tetracycline (94.9%), which has significant implications for treatment options. Collectively, these data provide important information on vaginal GBS carriage isolate virulence potential and highlight the value of continued surveillance.
Journal Article
The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus
by
Coady, Alison
,
Patras, Kathryn A.
,
Riestra, Angelica M.
in
16S rRNA sequencing
,
Abundance
,
Animal models
2018
Background
Composition of the vaginal microbiota has significant influence on female urogenital health and control of infectious disease. Murine models are widely utilized to characterize host-pathogen interactions within the vaginal tract, however, the composition of endogenous vaginal flora remains largely undefined with modern microbiome analyses. Here, we employ 16S rRNA amplicon sequencing to establish the native microbial composition of the vaginal tract in adult C57Bl/6 J mice. We further interrogate the impact of estrous cycle and introduction of the human vaginal pathobiont, group B
Streptococcus
(GBS) on community state type and stability, and conversely, the impact of the vaginal microbiota on GBS persistence.
Results
Sequencing analysis revealed five distinctive community states of the vaginal microbiota dominated largely by
Staphylococcus
and/or
Enterococcus
,
Lactobacillus
, or a mixed population. Stage of estrus did not impact microbial composition. Introduction of GBS decreased community stability at early timepoints; and in some mice, GBS became the dominant bacterium by day 21. Endogenous
Staphylococcus
abundance correlated with GBS ascension into the uterus, and increased community stability in GBS-challenged mice.
Conclusions
The murine vaginal flora is diverse and fluctuates independently of the estrous cycle. Endogenous flora may impact pathogen colonization and dissemination and should be considered in urogenital infection models.
Journal Article
Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota
2024
Group B
Streptococcus
(GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination
in utero
are poorly defined. Gestational
diabetes mellitus
(GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS
in utero
dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (
yfhO
), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease.
Here, Marcado-Evans et al show that gestational diabetes enhances group B Streptococcus infection through altering host-microbe dynamics, disrupting maternal immunity, and perturbing the vaginal microbiota in a murine pregnancy model.
Journal Article
Gestational diabetes as a risk factor for GBS maternal rectovaginal colonization: a systematic review and meta-analysis
by
Patras, Kathryn A.
,
Mercado-Evans, Vicki
,
Zulk, Jacob J.
in
Antibiotics
,
Bias
,
Cohort analysis
2024
Background
Maternal rectovaginal colonization by group B
Streptococcus
(GBS) increases the risk of perinatal GBS disease that can lead to death or long-term neurological impairment. Factors that increase the risk of rectovaginal GBS carriage are incompletely understood resulting in missed opportunities for detecting GBS in risk-based clinical approaches. There is a lacking consensus on whether gestational diabetes mellitus (GDM) is a risk factor for rectovaginal GBS. This systematic review and meta-analysis aims to address current conflicting findings and determine whether GDM should be clinically considered as a risk factor for maternal GBS colonization.
Methods
Peer-reviewed studies that provided GDM prevalence and documented GBS vaginal and/or rectal colonization in women with and without GDM were included in this analysis. From study inception to October 30, 2023, we identified 6,275 relevant studies from EMBASE and PUBMED of which 19 were eligible for inclusion. Eligible studies were analyzed and thoroughly assessed for risk of bias with a modified Newcastle-Ottawa Scale that interrogated representativeness and comparability of cohorts, quality of reporting for GDM and GBS status, and potential bias from other metabolic diseases. Results were synthesized using STATA 18 and analyzed using random-effects meta-analyses.
Results
Studies encompassed 266,706 women from 10 different countries, with study periods spanning from 1981 to 2020. Meta-analysis revealed that gestational diabetes is associated with a 16% increased risk of rectovaginal GBS carriage (OR 1.16, CI 1.07–1.26,
P
= 0.003). We also performed subgroup analyses to assess independent effects of pregestational vs. gestational diabetes on risk of maternal GBS carriage. Pregestational diabetes (Type 1 or Type 2 diabetes mellitus) was also associated with an increased risk of 76% (pooled OR 1.76, CI 1.27–2.45,
P
= 0.0008).
Conclusions
This study achieved a consensus among previously discrepant observations and demonstrated that gestational diabetes and pregestational diabetes are significant risk factors for maternal rectovaginal carriage of GBS. Recognition of GDM as a risk factor during clinical decisions about GBS screening and intrapartum antibiotic prophylaxis may decrease the global burden of GBS on maternal-perinatal health.
Journal Article
Broad protective vaccination against systemic Escherichia coli with autotransporter antigens
2023
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH , annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E . coli colonization and virulence.
Journal Article
Guanine nucleotide biosynthesis blockade impairs MLL complex formation and sensitizes leukemias to menin inhibition
2025
Targeting the dependency of
MLL
-rearranged (
MLL
r) leukemias on menin with small molecule inhibitors has opened new therapeutic strategies for these poor-prognosis diseases. However, the rapid development of menin inhibitor resistance calls for combinatory strategies to improve responses and prevent resistance. Here we show that leukemia stem cells (LSCs) of
MLL
r acute myeloid leukemia (AML) exhibit enhanced guanine nucleotide biosynthesis, the inhibition of which leads to myeloid differentiation and sensitization to menin inhibitors. Mechanistically, targeting inosine monophosphate dehydrogenase 2 (IMPDH2) reduces guanine nucleotides and rRNA transcription, leading to reduced protein expression of LEDGF and menin. Consequently, the formation and chromatin binding of the MLL-fusion complex is impaired, reducing the expression of MLL target genes. Inhibition of guanine nucleotide biosynthesis or rRNA transcription further suppresses
MLL
r AML when combined with a menin inhibitor. Our findings underscore the requirement of guanine nucleotide biosynthesis in maintaining the function of the LEDGF/menin/MLL-fusion complex and provide a rationale to target guanine nucleotide biosynthesis to sensitize
MLL
r leukemias to menin inhibitors.
Resistance to menin inhibitors often occurs in the initially sensitive MLL-rearranged (MLLr) leukemias. Here authors discover that inhibition of guanine nucleotide biosynthesis leads to myeloid differentiation and sensitization to menin inhibitors in leukemia stem cells of MLLr leukemia.
Journal Article
Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells
2016
Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.
Journal Article
Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection
2025
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared with WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the effect of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways; enhances NETosis in an ROS-dependent manner; and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Journal Article
The Fungal Pathogen Candida albicans Promotes Bladder Colonization of Group B Streptococcus
by
Ramos, Anissa R.
,
Shing, Samuel R.
,
McCabe, Sinead
in
Asymptomatic
,
Bladder
,
Candida albicans
2020
Group B
(GBS) is a common cause of bacterial urinary tract infections (UTI) in susceptible populations, including pregnant women and the elderly. However, the factors that govern GBS persistence and disease severity in this niche are not fully understood. Here, we report that the presence of the fungus
, a common urogenital colonizer, can promote GBS UTI. Co-inoculation of GBS with
increased bacterial adherence to bladder epithelium and promoted GBS colonization
in a
adhesin-dependent manner. This study demonstrates that fungal colonization of the urogenital tract may be an important determinant of bacterial pathogenesis during UTI.
Journal Article