Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
105 result(s) for "Patrick, Roman L"
Sort by:
The current status of the Papanicolaou smear
The Pap smear is one of the most widely accepted screening procedures for cancer, and many studies have attested to its effectiveness. Important issues related to the Pap smear are still being evaluated and debated.
Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits
Background: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. Objectives: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter (PM 2.5 ), ozone, and nitrogen dioxide (NO2 ) concentrations. Methods: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. Results: We estimated that 9–23 million and 5–10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and PM 2.5 , respectively, representing 8–20% and 4–9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for ∼ 37 % and 73% of ozone and PM 2.5 impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and PM 2.5 (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. Conclusions: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation.
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical courses and outcomes, even within the same tumor stage. This study explores deep learning applications in medical imaging allowing for the automated quantification of radiographic characteristics and potentially improving patient stratification. We performed an integrative analysis on 7 independent datasets across 5 institutions totaling 1,194 NSCLC patients (age median = 68.3 years [range 32.5-93.3], survival median = 1.7 years [range 0.0-11.7]). Using external validation in computed tomography (CT) data, we identified prognostic signatures using a 3D convolutional neural network (CNN) for patients treated with radiotherapy (n = 771, age median = 68.0 years [range 32.5-93.3], survival median = 1.3 years [range 0.0-11.7]). We then employed a transfer learning approach to achieve the same for surgery patients (n = 391, age median = 69.1 years [range 37.2-88.0], survival median = 3.1 years [range 0.0-8.8]). We found that the CNN predictions were significantly associated with 2-year overall survival from the start of respective treatment for radiotherapy (area under the receiver operating characteristic curve [AUC] = 0.70 [95% CI 0.63-0.78], p < 0.001) and surgery (AUC = 0.71 [95% CI 0.60-0.82], p < 0.001) patients. The CNN was also able to significantly stratify patients into low and high mortality risk groups in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. Additionally, the CNN was found to significantly outperform random forest models built on clinical parameters-including age, sex, and tumor node metastasis stage-as well as demonstrate high robustness against test-retest (intraclass correlation coefficient = 0.91) and inter-reader (Spearman's rank-order correlation = 0.88) variations. To gain a better understanding of the characteristics captured by the CNN, we identified regions with the most contribution towards predictions and highlighted the importance of tumor-surrounding tissue in patient stratification. We also present preliminary findings on the biological basis of the captured phenotypes as being linked to cell cycle and transcriptional processes. Limitations include the retrospective nature of this study as well as the opaque black box nature of deep learning networks. Our results provide evidence that deep learning networks may be used for mortality risk stratification based on standard-of-care CT images from NSCLC patients. This evidence motivates future research into better deciphering the clinical and biological basis of deep learning networks as well as validation in prospective data.
Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6C high monocytes infiltrate the nerve first and rapidly give way to Ly6C negative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient ( Csf2 -/- ) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US
Wildfire activity in the western United States (US) has been increasing, a trend that has been correlated with changing patterns of temperature and precipitation associated with climate change. Health effects associated with exposure to wildfire smoke and fine particulate matter (PM 2.5 ) include short- and long-term premature mortality, hospital admissions, emergency department visits, and other respiratory and cardiovascular incidents. We estimate PM 2.5 exposure and health impacts for the entire continental US from current and future western US wildfire activity projected for a range of future climate scenarios through the 21st century. We use a simulation approach to estimate wildfire activity, area burned, fine particulate emissions, air quality concentrations, health effects, and economic valuation of health effects, using established and novel methodologies. We find that climatic factors increase wildfire pollutant emissions by an average of 0.40% per year over the 2006–2100 period under Representative Concentration Pathway (RCP) 4.5 (lower emissions scenarios) and 0.71% per year for RCP8.5. As a consequence, spatially weighted wildfire PM 2.5 concentrations more than double for some climate model projections by the end of the 21st century. PM 2.5 exposure changes, combined with population projections, result in a wildfire PM2.5-related premature mortality excess burden in the 2090 RCP8.5 scenario that is roughly 3.5 times larger than in the baseline period. The combined effect of increased wildfire activity, population growth, and increase in the valuation of avoided risk of premature mortality over time results in a large increase in total economic impact of wildfire-related PM 2.5 mortality and morbidity in the continental US, from roughly$7 billion per year in the baseline period to roughly $ 36 billion per year in 2090 for RCP4.5, and $43 billion per year in RCP8.5. The climate effect alone accounts for a roughly 60% increase in wildfire PM2.5-related premature mortality in the RCP8.5 scenario, relative to baseline conditions.
tRigon: an R package and Shiny App for integrative (path-)omics data analysis
Background Pathomics facilitates automated, reproducible and precise histopathology analysis and morphological phenotyping. Similar to molecular omics, pathomics datasets are high-dimensional, but also face large outlier variability and inherent data missingness, making quick and comprehensible data analysis challenging. To facilitate pathomics data analysis and interpretation as well as support a broad implementation we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny application for fast, comprehensive and reproducible pathomics analysis. Results tRigon is available via the CRAN repository ( https://cran.r-project.org/web/packages/tRigon ) with its source code available on GitLab ( https://git-ce.rwth-aachen.de/labooratory-ai/trigon ). The tRigon package can be installed locally and its application can be executed from the R console via the command ‘tRigon::run_tRigon()’. Alternatively, the application is hosted online and can be accessed at https://labooratory.shinyapps.io/tRigon . We show fast computation of small, medium and large datasets in a low- and high-performance hardware setting, indicating broad applicability of tRigon. Conclusions tRigon allows researchers without coding abilities to perform exploratory feature analyses of pathomics and non-pathomics datasets on their own using a variety of hardware.
Genotypic analysis of RTS,S/AS01E malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5–17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial
The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5–17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. We observed significant and similar vaccine efficacy (25–43%; 95% CI union 9–53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1–1·6 infections (95% CI union 0·6–2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50–80) than in those who were uninfected (37%; 23–48) at the first vaccination (p=0·0053). All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice
The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain’s clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th + / Dat1 + cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants. The psychostimulant-sensitive neural mechanism linking the circadian clock to locomotion is unknown. Here, hypothalamic A14 neurons are shown to time diurnal activity by entraining the lateral septum, and their activity is shown to be sensitive to amphetamine.
The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation
Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4 + and CD8 + T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria—two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8 + T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4 + T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses. NKG7 is a molecule well associated with NK cells but of unknown function. Engwerda and colleagues demonstrate that NKG7 is also associated with T H 1 cells and is essential for type I and cytotoxic responses.
Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections
Pf bacteriophage are temperate phages that infect the bacterium , a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.