Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
182
result(s) for
"Patterson, Heather"
Sort by:
Tropical fishes vanished after the operation of a nuclear power plant was suspended in the Sea of Japan
2020
Thermal discharge from a nuclear power plant (NPP) provides an opportunity to foresee changes in faunal communities that may be induced by ocean warming. I assessed these changes by identifying characteristics of the fish community near the thermal discharge from a NPP and by recording temporal changes that occurred after the suspension of the NPP. Underwater visual censuses were conducted near Takahama NPP in the Sea of Japan, and fish assemblages were compared to those in two other sites: a site with discharge from a coal-fired power plant and a control site. During the surveyed period (8 years) when the NPP was in operation, the sea water temperature at the site near the NPP was warmer, had a significantly higher fish abundance, and a higher species richness, including tropical fishes, than the other two sites. However, once the NPP was suspended, tropical fishes dramatically decreased near the NPP. This abrupt change in fish assemblage may be due to the lowest lethal temperatures of tropical fishes being only slightly higher than the winter temperature in this area. Relatively poor ecosystem structure in the local warming area may also have contributed to low resilience of tropical fish species to this temperature change.
Journal Article
Human and climatic drivers affect spatial fishing patterns in a multiple-use marine protected area: The Galapagos Marine Reserve
2020
Assessments of the effectiveness of marine protected areas (MPAs) usually assume that fishing patterns change exclusively due to the implementation of an MPA. This assumption increases the risk of erroneous conclusions in assessing marine zoning, and consequently counter-productive management actions. Accordingly, it is important to understand how fishers respond to a combination of the implementation of no-take zones, and various climatic and human drivers of change. Those adaptive responses could influence the interpretation of assessment of no-take zone effectiveness, yet few studies have examined these aspects. Indeed, such analysis is often unfeasible in developing countries, due to the dominance of data-poor fisheries, which precludes full examination of the social-ecological outcomes of MPAs. In the Galapagos Marine Reserve (Ecuador), however, the availability of long-term spatially explicit fishery monitoring data (1997-2011) for the spiny lobster fishery allows such an analysis. Accordingly, we evaluated how the spatiotemporal allocation of fishing effort in this multiple-use MPA was affected by the interaction of diverse climatic and human drivers, before and after implementation of no-take zones. Geographic information system modelling techniques were used in combination with boosted regression models to identify how these drivers influenced fishers' behavior. Our results show that the boom-and-bust exploitation of the sea cucumber fishery and the global financial crisis 2007-09, rather than no-take zone implementation, were the most important drivers affecting the distribution of fishing effort across the archipelago. Both drivers triggered substantial macro-scale changes in fishing effort dynamics, which in turn altered the micro-scale dynamics of fishing patterns. Fishers' adaptive responses were identified, and their management implications analyzed. This leads to recommendations for more effective marine and fishery management in the Galapagos, based on improved assessment of the effectiveness of no-take zones.
Journal Article
Differential impacts of freshwater and marine covariates on wild and hatchery Chinook salmon marine survival
by
Crozier, Lisa
,
Zabel, Rich
,
Burke, Brian
in
Animal behavior
,
Biology and Life Sciences
,
Chinook salmon
2021
Large-scale atmospheric conditions in the Northeast Pacific Ocean affect both the freshwater environment in the Columbia River Basin and marine conditions along the coasts of Oregon, Washington, and British Columbia, resulting in correlated conditions in the two environments. For migrating species, such as salmonids that move through multiple habitats, these correlations can amplify the impact of good or poor physical conditions on growth and survival, as movements among habitats may not alleviate effects of anomalous conditions. Unfortunately, identifying the mechanistic drivers of salmon survival in space and time is hindered by these cross-habitat correlations. To address this issue, we modeled the marine survival of Snake River spring/summer Chinook salmon with multiple indices of the marine environment and an explicit treatment of the effect of arrival timing from freshwater to the ocean, and found that both habitats contribute to marine survival rates. We show how this particular carryover effect of freshwater conditions on marine survival varies by year and rearing type (hatchery or wild), with a larger effect for wild fish. As environmental conditions change, incorporating effects from both freshwater and marine habitats into salmon survival models will become more important, and has the additional benefit of highlighting how management actions that affect arrival timing may improve marine survival.
Journal Article
Toward elimination of unwanted catches using a 100 mm T90 extension and codend in demersal mixed fisheries
by
Larnaud, Pascal
,
Robert, Marianne
,
Morandeau, Fabien
in
Biology and Life Sciences
,
Bycatch reduction devices
,
Capros aper
2020
Most European fishing fleets will need to drastically reduce their unwanted catches to comply with new rules of the common fisheries policy. A more practical way to avoid increasing on-board sorting time and issues linked to storage capacity is to prevent unwanted catches in the first place. We assessed the selectivity properties of an experimental fishing gear that combined a 100 mm T90 cylinder with 130 meshes in the extension and a 100 mm T90 codend of 33 meshes (experimental gear) compared to a 100 mm diamond mesh extension and codend (control gear) during commercial trips using twin trawls. Analysis of the relative size composition of catches indicated a significantly higher escapement of small fish of several target species (e.g. Lepidorhombus whiffiagonis, Melanogrammus aeglefinus, Raja spp, and Lophius spp) and non-target species (e.g. Capros aper and Gurnards spp) from the T90 experimental trawl compared to the control trawl (n = 49 hauls), resulting in a significant reduction of unwanted catches of Gadidae, Triglidae, and Caproidae. In contrast, non-negligible commercial losses of small grade target gadoid species were observed. Mixed general linear models showed that the proportion of ray, haddock and anglerfish retained per length class decreased with increased tow duration. The T90 experimental gear will perform at a commercial level when targeting monkfish, megrim, rays and large haddock, however fishers are not likely to use this gear when targeting smaller-bodied species such as cephalopods, small haddock, whiting (Merlangius merlangus) and hake (Merluccius merluccius), because the gear is likely to allow large numbers to escape. Selectivity studies often focus on a short list of target species; however, catches of non-target species under quota can be problematic for some fisheries. For example, under the implementation of the Landing Obligation catches of boarfish could choke the French whitefish demersal fisheries in the Celtic sea, as France has no national quota for that species. The device tested constitutes an efficient solution to mitigate catches for such non-target schooling fish.
Journal Article
Towards a global understanding of the drivers of marine and terrestrial biodiversity
by
Tyler O. Gagne
,
Gabriel Reygondeau
,
Elliott L. Hazen
in
Animals
,
Anthropocene
,
Artificial neural networks
2020
Understanding the distribution of life's variety has driven naturalists and scientists for centuries, yet this has been constrained both by the available data and the models needed for their analysis. Here we compiled data for over 67,000 marine and terrestrial species and used artificial neural networks to model species richness with the state and variability of climate, productivity, and multiple other environmental variables. We find terrestrial diversity is better predicted by the available environmental drivers than is marine diversity, and that marine diversity can be predicted with a smaller set of variables. Ecological mechanisms such as geographic isolation and structural complexity appear to explain model residuals and also identify regions and processes that deserve further attention at the global scale. Improving estimates of the relationships between the patterns of global biodiversity, and the environmental mechanisms that support them, should help in efforts to mitigate the impacts of climate change and provide guidance for adapting to life in the Anthropocene.
Journal Article
Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill
by
Hernandez Jr, Frank J
,
Condon, Robert H
,
Carmichael, Ruth H
in
Carbon
,
Depletion
,
Dispersants
2010
The Deepwater Horizon oil spill was unprecedented in total loading of petroleum hydrocarbons accidentally released to a marine ecosystem. Controversial application of chemical dispersants presumably accelerated microbial consumption of oil components, especially in warm Gulf of Mexico surface waters. We employed δ13C as a tracer of oil-derived carbon to resolve two periods of isotopic carbon depletion in two plankton size classes. Carbon depletion was coincident with the arrival of surface oil slicks in the far northern Gulf, and demonstrated that subsurface oil carbon was incorporated into the plankton food web.
Journal Article
Biomarkers of Dissolved Oxygen Stress in Oysters: A Tool for Restoration and Management Efforts
by
Patterson, Heather K.
,
Boettcher, Anne
,
Carmichael, Ruth H.
in
Abiotic factors
,
Alabama
,
Animals
2014
The frequency and intensity of anoxic and hypoxic events are increasing worldwide, creating stress on the organisms that inhabit affected waters. To understand the effects of low dissolved oxygen stress on oysters, hatchery-reared oysters were placed in cages and deployed along with continuously recording environmental data sondes at a reef site in Mobile Bay, AL that typically experiences low oxygen conditions. To detect and measure sublethal stress, we measured growth and survival of oysters as well as expression of three biomarkers, heat shock protein 70 (HSP70), hypoxia inducible factor (HIF) and phospho-p38 MAP kinase, in tissues from juvenile and adult oysters. Survival rates were high for both juvenile and adult oysters. Expression levels of each of the 3 isoforms of HSP 70 were negatively correlated to dissolved oxygen (DO) concentrations, suggesting that HSP 70 is useful to quantify sublethal effects of DO stress. Results for HIF and phospho-p38 MAP kinase were inconclusive. Test deployments of oysters to assess expression of HSP 70 relative to environmental conditions will be useful, in addition to measuring abiotic factors, to identify appropriate sites for restoration, particularly to capture negative effects of habitat quality on biota before lethal impacts are incurred.
Journal Article
Shark discards in selective and mixed-species pelagic longline fisheries
by
Santos, Jorge
,
Groeneveld, Johan C
,
Jordaan, Gareth L
in
Biology and Life Sciences
,
Blood vessels
,
Bycatch
2020
The conservation status of several pelagic shark species is considered vulnerable with declining populations, yet data on shark fishing mortality remain limited for large ocean regions. Pelagic sharks are increasingly retained by mixed-species fisheries, or are discarded and not reported by selective fisheries for tunas (Thunnus spp.) or swordfish (Xiphias gladius). We estimated the fishing mortality of sharks (landings plus discard mortalities) in a South African-flagged pelagic longline fishery with diverse targeting and discard behaviour. A hierarchical cluster analysis was used to stratify the fleet according to the relative proportions of tunas, swordfish, blue sharks (Prionace glauca) and shortfin mako sharks (Isurus oxyrinchus) landed by individual vessels between 2013 and 2015. A spatial analysis of logbook data indicated that subfleets operated in distinct fishing areas, with overlap. Approximately 5% of all commercial longlines set during 2015 were sampled by a fisheries-independent observer, and the species, discard ratios and physical condition at discard of 6 019 captured sharks were recorded. Blue sharks and shortfin makos dominated observed shark catches, which were comprised of nine species and two species groups. Some 47% of observed sharks were retained and 20% were discarded in good physical condition. Only 4% of shortfin makos were discarded, compared to 68% of blue sharks. Blue shark discard mortality rates were twice as high as published at-vessel mortality rates, suggesting that onboard handling, among other factors, contributed to discard mortalities. Extrapolation to total fishing effort indicated a near 10-fold increase in blue shark and shortfin mako fishing mortality compared to an earlier study (1998–2005). Escalating shortfin mako fishing mortality was attributed to increased targeting to supply higher market demand. Discarding of blue sharks by selective fishing for tunas and swordfish had a greater impact on their fishing mortality than retention by shark-directed fleets. Higher levels of observer sampling are required to increase confidence in discard ratio estimates.
Journal Article
Do ecological characteristics drive the prevalence of Panulirus argus virus 1
by
Davies, Charlotte E
,
Negrete-Soto, Fernando
,
Moo-Cocom, Gema
in
Biodiversity
,
Diseases
,
Fishing (Recreation)
2020
PaV1 is a pathogenic virus found only to infect Caribbean spiny lobsters Panulirus argus, a major fishing resource. P. argus is a benthic mesopredator and has a complex life history, with several ontogenetic habitat changes. Habitat characteristics and species diversity of surrounding communities may have implications for disease dynamics. This is of more concern for juvenile lobsters, which are more susceptible to PaV1 and are far less mobile than adult lobsters. We targeted a population of juvenile P. argus in a reef lagoon in Mexico, where PaV1 was first observed in 2001. Prevalence has been since irregularly assessed, but in 2016 we began a more systematic assessment, with two sampling periods per year (June and November) in three different zones of the reef lagoon. To examine the relationship between PaV1 prevalence and potential ecological determinants, we assessed habitat complexity, cover of different substrates, and invertebrate community composition in all zones during the first four sampling periods (June and November 2016 and 2017). Habitat complexity and percent cover of some substrates varied with zone and sampling period. This was the case for seagrass and macroalgae, which nevertheless were the dominant substrates. The invertebrate community composition varied with sampling period, but not with zone. Probability of infection decreased with increasing lobster size, consistent with previous studies, but was not affected by zone (i.e., variations in ecological characteristics did not appear to be sufficiently large so as to influence prevalence of PaV1). This result possibly reflects the dominance of marine vegetation and suggests that lobsters can be sampled throughout the reef lagoon to assess PaV1 prevalence. Prevalence was higher in only one of seven sampling periods (November 2017), suggesting that the pathogen has leveled off to an enzootic level.
Journal Article
Early conservation benefits of a de facto marine protected area at San Clemente Island, California
by
Bredvik, Jessica
,
Nickols, Kerry J.
,
Esgro, Michael W.
in
Animals
,
Aquatic habitats
,
Armed forces
2020
De facto marine protected areas (DFMPAs) are regions of the ocean where human activity is restricted for reasons other than conservation. Although DFMPAs are widespread globally, their potential role in the protection of marine habitats, species, and ecosystems has not been well studied. In 2012 and 2013, we conducted remotely operated vehicle (ROV) surveys of marine communities at a military DFMPA closed to all civilian access since 2010 and an adjacent fished reference site at San Clemente Island, the southernmost of California's Channel Islands. We used data extracted from ROV imagery to compare density and biomass of focal species, as well as biodiversity and community composition, between the two sites. Generalized linear modeling indicated that both density and biomass of California sheephead (Semicossyphus pulcher) were significantly higher inside the DFMPA. Biomass of ocean whitefish (Caulolatilus princeps) was also significantly higher inside the DFMPA. However, species richness and Shannon-Weaver diversity were not significantly higher inside the DFMPA, and overall fish community composition did not differ significantly between sites. Demonstrable differences between the DFMPA and fished site for two highly sought-after species hint at early potential benefits of protection, though the lack of differences in the broader community suggests that a longer trajectory of recovery may be required for other species. A more comprehensive understanding of the potential conservation benefits of DFMPAs is important in the context of marine spatial planning and global marine conservation objectives.
Journal Article