Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
77
result(s) for
"Paudel, Keshav Raj"
Sort by:
Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties
2022
Stinging nettle (Urtica dioica L., Urticaceae) is commonly found in Asia, Africa, and Europe and has a long history of being used as food and traditional medicine. Recently, this plant is gaining attention as a highly nutritious food, where fresh leaves are dried and used as powder or in other forms. Leaves are rich in many bioactive compounds. This review aims to cover the traditional uses in food and medicine, as well as its nutritional composition, including its bioactive chemical constituents and reported food functional activities. Various bioactive chemical constituents have been isolated from stinging nettle to date, such as flavonoids, phenolic acids, amino acid, carotenoids, and fatty acids. Stinging nettle extracts and its compounds, such as rutin, kaempferol, and vitamin A, are also used for their nutritional properties and as anti-inflammatory and antioxidant agents. Future studies should focus on the proper formulation and stability testing of the functional foods containing stinging nettle and their detailed activities in clinical studies.
Journal Article
Microparticles-Mediated Vascular Inflammation and its Amelioration by Antioxidant Activity of Baicalin
2020
Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.
Journal Article
Editorial: Drug repurposing and polypharmacology: A synergistic approach in multi-target based drug discovery
by
Rudrapal, Mithun
,
Pangeni, Rudra
,
Paudel, Keshav Raj
in
Bibliometrics
,
Bioinformatics
,
cancer
2022
Another study reported byYang et al. utilized a molecular docking protocol to screen out potential inhibitors targeting the main protease (Mpro) of SARS-CoV-2. Cao et al. predicted the mechanism of action of licorice in the treatment of COVID-19 through an extensive computational analysis using bioinformatics tools and molecular dynamics simulation. [...]this Research Topic has provided in-depth insights into newer research findings (experimental, computational and review reports) and latest updates including technological advancements and challenges) related to ongoing repurposing strategies and drug discovery research in various therapeutic areas of current interest.
Journal Article
Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer
2023
Plant-derived compounds, specifically antioxidants, have played an important role in scavenging the free radicals present under diseased conditions. The persistent generation of free radicals in the body leads to inflammation and can result in even more severe diseases such as cancer. Notably, the antioxidant potential of various plant-derived compounds prevents and deregulates the formation of radicals by initiating their decomposition. There is a vast literature demonstrating antioxidant compounds’ anti-inflammatory, anti-diabetic, and anti-cancer potential. This review describes the molecular mechanism of various flavonoids, such as quercetin, kaempferol, naringenin, epicatechin, and epicatechin gallate, against different cancers. Additionally, the pharmaceutical application of these flavonoids against different cancers using nanotechnologies such as polymeric, lipid-based nanoparticles (solid–lipid and liquid–lipid), liposomes, and metallic nanocarriers is addressed. Finally, combination therapies in which these flavonoids are employed along with other anti-cancer agents are described, indicating the effective therapies for the management of various malignancies.
Journal Article
Rediscovering the Therapeutic Potential of Agarwood in the Management of Chronic Inflammatory Diseases
by
Gulati, Monica
,
Malik, Raniya
,
Panneerselvam, Jithendra
in
agarwood
,
agarwood oil
,
anti-inflammatory
2022
The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients’ overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.
Journal Article
ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer
2022
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by poor response to standard therapies and therefore unfavorable clinical outcomes. Better understanding of TNBC and new therapeutic strategies are urgently needed. ROR nuclear receptors are multifunctional transcription factors with important roles in circadian pathways and other processes including immunity and tumorigenesis. Nobiletin (NOB) is a natural compound known to display anticancer effects, and our previous studies showed that NOB activates RORs to enhance circadian rhythms and promote physiological fitness in mice. Here, we identified several TNBC cell lines being sensitive to NOB, by itself or in combination. Cell and xenograft experiments showed that NOB significantly inhibited TNBC cell proliferation and motility in vitro and in vivo. ROR loss- and gain-of-function studies showed concordant effects of the NOB–ROR axis on MDA-MB-231 cell growth. Mechanistically, we found that NOB activates ROR binding to the ROR response elements (RRE) of the IκBα promoter, and NOB strongly inhibited p65 nuclear translocation. Consistent with transcriptomic analysis indicating cancer and NF-κB signaling as major pathways altered by NOB, p65-inducible expression abolished NOB effects, illustrating a requisite role of NF-κB suppression mediating the anti-TNBC effect of NOB. Finally, in vivo mouse xenograft studies showed that NOB enhanced the antitumor efficacy in mammary fat pad implanted TNBC, as a single agent or in combination with the chemotherapy agent Docetaxel. Together, our study highlights an anti-TNBC mechanism of ROR-NOB via suppression of NF-κB signaling, suggesting novel preventive and chemotherapeutic strategies against this devastating disease.
Journal Article
The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health
by
Sharma, Kushal
,
Hansbro, Philip M.
,
Kachelmeier, Allan
in
Alzheimer's disease
,
Analysis
,
Angiogenesis
2022
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Journal Article
Evaluation of the Cytotoxic Activity and Anti-Migratory Effect of Berberine–Phytantriol Liquid Crystalline Nanoparticle Formulation on Non-Small-Cell Lung Cancer In Vitro
2022
Non-small-cell lung cancer (NSCLC) is the most common form of lung cancer, which is a leading cause of cancer-related deaths worldwide. Berberine is an isoquinoline alkaloid that is commercially available for use as a supplement for the treatment of diabetes and cardiovascular diseases. However, the therapeutic benefits of berberine are limited by its extremely low bioavailability and toxicity at higher doses. Increasing evidence suggests that the incorporation of drug compounds in liquid crystal nanoparticles provides a new platform for the safe, effective, stable, and controlled delivery of the drug molecules. This study aimed to formulate an optimized formulation of berberine–phytantriol-loaded liquid crystalline nanoparticles (BP-LCNs) and to investigate the in vitro anti-cancer activity in a human lung adenocarcinoma A549 cell line. The BP-LCN formulation possessing optimal characteristics that was used in this study had a favorable particle size and entrapment efficiency rate (75.31%) and a superior drug release profile. The potential mechanism of action of the formulation was determined by measuring the mRNA levels of the tumor-associated genes PTEN, P53, and KRT18 and the protein expression levels with a human oncology protein array. BP-LCNs decreased the proliferation, migration, and colony-forming activity of A549 cells in a dose-dependent manner by upregulating the mRNA expression of PTEN and P53 and downregulating the mRNA expression of KRT18. Similarly, BP-LCNs also decreased the expression of proteins related to cancer cell proliferation and migration. This study highlights the utility of phytantriol-based LCNs in incorporating drug molecules with low GI absorption and bioavailability to increase their pharmacological effectiveness and potency in NSCLC.
Journal Article
Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery
by
Hatvate, Navnath
,
Ingle, Rahul G.
,
Rojekar, Satish
in
biocompatibility
,
Cataracts
,
Drug delivery systems
2024
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Journal Article
Recent trends and therapeutic potential of phytoceutical‐based nanoparticle delivery systems in mitigating non‐small cell lung cancer
2025
Lung cancer is the leading cause of cancer death globally, with non‐small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer‐associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non‐small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems. Bioactive molecules from plants, known as phytoceuticals, have been shown to upregulate anticancer pathways and downregulate pro‐cancer pathways associated with non‐small cell lung cancer. However, low solubility, poor absorption, and hepatic metabolism result in poor biovavailability. Utilising advanced nanoparticle delivery systems to encapsulate phytoceutical molecules to improve biovailability has the potential to improve lung cancer treatment.
Journal Article