Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,431
result(s) for
"Paul, Sébastien"
Sort by:
Ceria-Catalysed Production of Dimethyl Carbonate from Methanol and CO2: Effect of Using a Dehydrating Agent Combined with a Solid Cocatalyst
2024
The direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol over ceria-based catalysts, in the presence of a dehydrating agent shifting the thermodynamical equilibrium of the reaction, has received significant interest recently. In this work, several dehydrating agents, such as molecular sieves, 2,2-dimethoxypropane (DMP), dimethoxymethane (DMM) and 1,1,1-trimethoxymethane (TMM), are combined with commercial ceria to compare their influence on the DMC yield obtained under the same set of operating conditions. TMM is found to be the most efficient; however, its conversion is not complete even after 48 h of reaction. Therefore, it is proposed for the very first time, to the best of our knowledge, to add a second solid cocatalyst in the reaction medium to accelerate the TMM hydration reaction without degrading the DMC already formed. Basic oxides and acidic zeolites with different Si/Al ratios are employed to accelerate the hydration of TMM, so as to improve the DMC yield. 13X was identified as the best option to play this role. Finally, three different commercial cerias are tested in the presence of TMM and molecular sieve 13X as the second catalyst. The most efficient combination of ceria, TMM, and molecular sieve 13X is ultimately tested in a 250 mL autoclave to start to scale up the process. A very high DMC production of 199.5 mmol DMC/gcat. is obtained.
Journal Article
Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation?
2019
Metallic nickel is known to efficiently catalyze hydrogenation reactions, but one of its major drawbacks lies in its lack of selectivity, linked to side-reactions of hydrogenolysis and over-hydrogenation. More selective hydrogenations can be obtained upon the introduction of a second metal in combination with Ni. Fe is an interesting choice, as it is a cheap and abundant metal. This review aims at discussing the advantages and constraints brought by the preparation procedures of bimetallic supported Ni–Fe nanoparticles, and at analyzing the benefits one can draw by substituting Ni–Fe supported catalysts for Ni monometallic systems for the catalytic hydrogenation of organic molecules. Specific formulations, such as Ni75Fe25, will be singled out for their high activity or selectivity, and the various hypotheses behind the roles played by Fe will be summarized.
Journal Article
Alkaline-Based Catalysts for Glycerol Polymerization Reaction: A Review
by
Paul, Sébastien
,
Ebadipour, Negisa
,
Katryniok, Benjamin
in
Antiinfectives and antibacterials
,
Biocompatibility
,
Biodiesel fuels
2020
Polyglycerols (PGs) are biocompatible and highly functional polyols with a wide range of applications, such as emulsifiers, stabilizers and antimicrobial agents, in many industries including cosmetics, food, plastic and biomedical. The demand increase for biobased PGs encourages researchers to develop new catalytic systems for glycerol polymerization. This review focuses on alkaline homogeneous and heterogeneous catalysts. The performances of the alkaline catalysts are compared in terms of conversion and selectivity, and their respective advantages and disadvantages are commented. While homogeneous catalysts exhibit a high catalytic activity, they cannot be recycled and reused, whereas solid catalysts can be partially recycled. The key issue for heterogenous catalytic systems, which is unsolved thus far, is linked to their instability due to partial dissolution in the reaction medium. Further, this paper also reviews the proposed mechanisms of glycerol polymerization over alkaline-based catalysts and discusses the various operating conditions with an impact on performance. More particularly, temperature and amount of catalyst are proven to have a significant influence on glycerol conversion and on its polymerization extent.
Journal Article
Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization
by
Paul, Sébastien
,
Ebadipour, Negisa
,
Katryniok, Benjamin
in
Biodiesel fuels
,
Calcium
,
Catalysis
2021
Calcium-based catalysts are of high interest for glycerol polymerization due to their high catalytic activity and large availability. However, their poor stability under reaction conditions is an issue. In the present study, we investigated the stability and catalytic activity of Ca-hydroxyapatites (HAps) as one of the most abundant Ca-source in nature. A stochiometric, Ca-deficient and Ca-rich HAps were synthesized and tested as catalysts in the glycerol polymerization reaction. Deficient and stochiometric HAps exhibited a remarkable 100% selectivity to triglycerol at 15% of glycerol conversion at 245 °C after 8 h of reaction in the presence of 0.5 mol.% of catalyst. Moreover, under the same reaction conditions, Ca-rich HAp showed a high selectivity (88%) to di- and triglycerol at a glycerol conversion of 27%. Most importantly, these catalysts were unexpectedly stable towards leaching under the reaction conditions based on the ICP-OES results. However, based on the catalytic tests and characterization analysis performed by XRD, XPS, IR, TGA-DSC and ICP-OES, we found that HAps can be deactivated by the presence of the reaction products themselves, i.e., water and polymers.
Journal Article
Selective Oxidation of Furfural at Room Temperature on a TiO2-Supported Ag Catalyst
by
Paul, Sébastien
,
Sadier, Achraf
,
Wojcieszak, Robert
in
Acids
,
Aqueous solutions
,
Atmospheric pressure
2022
The catalytic performance of the Ag/TiO2 catalyst was evaluated in the oxidation of furfural (FF) to furoic acid (FA) in an alkaline aqueous solution under 15 bar of air in a batch reactor. The catalytic activity, yield, and stability of the catalyst were compared as a function of different reaction parameters including temperature (25–110 °C), nature of the atmosphere, base equivalent (nbase/nFF = 0.25–3), and nature of the inorganic bases used (NaOH, NaHCO3, and Na2CO3). Under optimum conditions, the yield of FA (96%) was achieved at room temperature, with an excellent carbon balance (>98%). The recyclability of the catalyst was also studied and the catalytic activity of the Ag/TiO2 catalyst slightly declined due to an increase in particle size as confirmed by TEM studies.
Journal Article
Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: A Critical Review
2021
Selective oxidation of isobutane to methacrolein (MAC) and methacrylic acid (MAA) has received great interest both in the chemical industry and in academic research. The advantages of this reaction originate not only from the low cost of the starting material and reduced process complexity, but also from limiting the use of toxic reactants and the production of wastes. Successive studies and reports have shown that heteropolycompounds (HPCs) with Keggin structure (under the form of partially neutralized acids with increased stability) can selectively convert isobutane to MAA and MAC due to their strong and tunable acidity and redox properties. This review hence aims to discuss the Keggin-type HPCs that have been used in recent years to catalyze the oxidation of isobutane to MAA and MAC, and to review alternative metal oxides with proper redox properties for the same reaction. In addition, the influence of the main reaction conditions will be discussed.
Journal Article
Rational design of selective metal catalysts for alcohol amination with ammonia
by
Ibañez, Javier
,
Paul, Sébastien
,
Sautet, Philippe
in
639/638/563/979
,
639/638/77/885
,
639/638/77/887
2019
The lack of selectivity for the direct amination of alcohols with ammonia (a modern and clean route for the synthesis of primary amines) is an unsolved problem. Here, we combine first-principles calculations, scaling relations, kinetic simulations and catalysis experiments to determine the key factors that govern the activity and selectivity of metal catalysts for this reaction. We show that the loss of selectivity towards primary amines is linked to a surface-mediated C–N bond coupling between two N-containing intermediates: CH
3
NH and CH
2
NH. The barrier for this step is low enough to compete with the main surface hydrogenation reactions and it can be used as a descriptor for selectivity. The activity and selectivity maps (using the C and O adsorption energies as descriptors) were combined for the computational screening of 348 dilute bimetallic catalysts. Among the best theoretical candidates, Co
98.5
Ag
1.5
and Co
98.5
Ru
1.5
(5 wt% Co) were identified experimentally to be the most promising catalysts.
The direct amination of alcohols with ammonia is a modern and clean route for the synthesis of amines. This joint theoretical and experimental study reveals the key factors governing the activity and selectivity to primary amines on metals, which are then used for the rational design of bimetallic catalysts.
Journal Article
Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base
2020
Selective oxidation of furfural to furoic acid was performed with pure oxygen in aqueous phase under mild conditions and uncontrolled pH using hydrotalcite-supported gold nanoparticles as catalyst. Hydrotalcites with different Mg: Al ratios were tested as support. The effects of reaction time, temperature and furfural/catalyst ratio were evaluated. The catalyst Au/HT 4:1 showed the highest activity and selectivity to the desired product, achieving a complete conversion of furfural to furoic acid after 2 h at 110 °C. Further, stability tests were carried out in a continuous stirred-tank reactor and a progressive deactivation of the catalyst due to the leaching of Mg2+ cations from the support inducing changes in the pH of the reaction medium was observed.
Journal Article
Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2
2025
The catalytic performance of metal oxide materials is profoundly influenced by both chemical composition and surface morphology, particularly at high dopant loadings where metallic clusters can form. Here, we use density functional theory (DFT) to elucidate how copper incorporation—either as isolated dopants or as surface clusters—modulates the mechanism and activity of ZrO2 catalysts in the direct carboxylation of phenol to para-hydroxybenzoic acid. Our results reveal that while Cu doping inhibits C–H bond activation, the presence of Cu clusters at the ZrO2 surface dramatically lowers the barrier for C–C coupling with CO2, owing to unique interfacial sites that facilitate substrate activation and CO2 bending. We show that the reaction mechanism shifts from an Eley–Rideal pathway on pure ZrO2 to a Langmuir–Hinshelwood mechanism on Cu-modified surfaces, with the rate-determining step depending on the Cu morphology. These findings demonstrate that even small amounts of metallic clusters can fundamentally alter catalytic pathways, providing actionable insights for the rational design of heterogeneous catalysts for selective aromatic carboxylation.
Journal Article
Direct Synthesis of Dimethyl Carbonate from Methanol and CO2 over ZrO2 Catalysts Combined with a Dehydrating Agent and a Cocatalyst
2024
Zirconia nanocrystals as catalysts for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide have received significant interest recently. In this paper, three zirconia-based catalysts presenting different monoclinic and tetragonal phase contents are prepared and characterized by X-ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), and temperature-programmed desorption of NH3 and CO2 (NH3-TPD and CO2-TPD). The catalytic performances of these solids are evaluated in terms of DMC production. This production is low when using the bare zirconias, but it is significantly increased in the presence of 1,1,1-trimethoxymethane (TMM) playing the role of a dehydrating agent, which shifts the thermodynamic equilibrium. Moreover, the production of DMC is further improved by adding a second solid catalyst (cocatalyst), the molecular sieve 13X, to accelerate the hydration of TMM. Hence, the molecular sieve 13X plays a dual role by trapping water molecules formed by the reaction of DMC synthesis and providing strong acidic sites catalyzing TMM hydrolysis. To the best of our knowledge, the combination of two solid catalysts in the reaction medium to accelerate the water elimination to obtain higher DMC production from CO2 and methanol has never been reported.
Journal Article