Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
372
result(s) for
"Peace, Alexander"
Sort by:
Beyond ‘crumple zones’: recent advances, applications and future directions in deformable plate tectonic modelling
2021
The recent proliferation of deformable plate tectonic modelling techniques has provided a new direction in the study of plate tectonics with substantial implications for our understanding of plate deformation and past kinematics. Such models account for intraplate deformation, yet are highly variable in their inputs, capabilities and applications. The aim of this commentary is to review recent contributions to this topic, and to consider future directions and major omissions. Through this review it is apparent that the current published deformable models can be subdivided into those that as an input either: (1) solely use plate motions to drive deformation, or (2) require stretching or beta factor. Deformable models are resolving some outstanding issues with plate reconstructions, but major simplifications and modelling assumptions remain. Primarily, obtaining model constraints on the spatio-temporal evolution of deformation is an outstanding problem. Deformable plate models likely work best when the kinematics of smaller plates are included. However, questions remain regarding how to define such blocks, and their kinematic histories, whilst some work suggests that inclusion of such entities is negated through quantitative restorations.
Journal Article
Unveiling magmatic structures and connectivity beneath the lunar Oceanus Procellarum region from GRAIL gravity data
by
Peace, Alexander L.
,
Kasmi, Chaouki
,
Welford, J. Kim
in
639/33/445/210
,
639/33/445/536
,
Conduits
2024
The Oceanus Procellarum region, characterized by its vast basaltic plains and pronounced volcanic activity, serves as a focal point for understanding the volcanic history of the Moon. Here we present density models of the magmatic structures beneath Oceanus Procellarum, derived from Gravity Recovery and Interior Laboratory (GRAIL) mission data. The models uncover pronounced linear magmatic structures along the Procellarum’s western border and significant intrusions within the northern and southern Marius Hills. Crucially, they reveal three narrow near-horizontal sheeted magmatic conduits, 80-150 km long, extending from near-surface to 6-7 km depth. These magmatic conduits connect the Marius Hills’ northern and southern intrusions and bridge them with the Procellarum western border structures, suggesting that they likely served as central pathways facilitating magma transport across various volcanic systems. These discoveries reveal widespread magmatic connectivity beneath Oceanus Procellarum and underscore the critical role of lateral magma transport processes in shaping the Moon’s volcanic evolution.
The Marius Hills, located in central Oceanus Procellarum, form the largest volcanic dome complex on the Moon. Here, gravity data is used to image the magmatic structures in this region. Magmatic conduits connect the northern and southern intrusions of Marius Hills and link them with the structures along Procellarum’s western border.
Journal Article
Compilation of Apatite Fission-Track Data from the Northeast Atlantic Realm: A Jigsaw Puzzle with Missing Pieces
by
Gröger, Heike
,
Hendriks, Bart
,
Schiffer, Christian
in
Apatite
,
Evolution
,
Geofysik med inriktning mot fasta jordens fysik
2024
The northeast (NE) Atlantic is one of the best-studied geological regions in the world, incorporating a wide array of geological phenomena including extensional tectonism, passive margin development, orogenesis, and breakup-related volcanism. Apatite fission-track (AFT) thermochronology has been an important tool in studying the onshore evolution of the NE Atlantic for several decades. Unfortunately, large regional-scale studies are rare, making it difficult to study geological processes across the whole region. In this work, a compilation of published AFT data is presented from across Fennoscandia, the British Isles, East Greenland, and Svalbard, with the goal of providing an accessible overview of the data and how this vast body of work has improved our understanding of the region’s evolution. Alongside a review of previous literature, interpolated maps of fission track age and mean track length (MTL) highlight regional trends in the data that may result from major first-order processes and areas of low sample density that should be targeted for future study. Additionally, in the absence of metadata required for thermal history modeling, apparent exhumation rate estimates are calculated from available elevation profiles and the timing of major exhumation events inferred from “boomerang plots” of fission track ages against MTL values. Across Fennoscandia, data suggests that the opening of the NE Atlantic and exhumation of the margin have clearly played a major role in the thermal history of the upper crust. The remaining areas of Britain, Ireland, East Greenland, and Svalbard all present more complex trends consistent with a combination of the NE Atlantic’s opening and the interplay between specific bedrock geology of sampling sites and localized geological processes. Areas of low sample density include southern Britain, NE Britain, southeast Greenland, southern Svalbard, and Eastern Fennoscandia, each of which provides the natural laboratory required to answer many unresolved questions.
Journal Article
Reactivation Potential of Intraplate Faults in the Western Quebec Seismic Zone, Eastern Canada
2021
The intraplate western Quebec seismic zone (WQSZ) in eastern Canada experiences moderate seismicity that mainly results from reactivation of inherited structures under the present‐day, NE‐SW‐striking regional maximum horizontal stress (SH) and, possibly to a minor extent, through stress perturbations in response to glacio‐isostatic adjustment. This work comprises the first numerical stress simulation‐based study that predicts the preferred spatial distribution, trends, and sense of slip of contemporary fault reactivation, which may have implications for possible fault segmentation patterns in the WQSZ. We show that mostly NNW‐SSE to NW‐SE‐striking faults exhibit the highest slip tendency values. Spatial patterns of slip tendency and kinematics of reactivation are consistent with the observed seismicity. In an area where Quaternary‐active faults have yet to be systematically identified, we have narrowed down areas to focus on for more detailed, future neotectonic investigations that could provide sound foundation for seismic hazard assessments. This study demonstrates the applicability of slip tendency analysis to identifying potentially active faults in stable continental regions worldwide. Key Points NW‐SE‐striking faults in the western Quebec seismic zone are more likely to be reactivated under the present‐day tectonic stress field Slip tendency analysis is applicable to identifying potentially active faults in stable continental regions
Journal Article
Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada
by
Peace, Alexander L
,
Schiffer, Christian
,
Phethean, Jordan J. J
in
Deformation
,
Deformation analysis
,
Economic importance
2024
Polyphase fault evolution through reactivation is a globally observed phenomenon on passive margins. These structures play a crucial role in petroleum systems, offer vital constraints on rift and passive margin kinematics, and, in certain instances, serve as global markers for far-field stresses. Despite the significance of reactivated faults, understanding their kinematic evolution, existence, extent, and interactions within fault populations is often limited. This underscores the need for comprehensive investigations, including considerations of halokinesis in this process. This study presents a structural interpretation of a relay ramp identified in the Penobscot 3D seismic reflection survey offshore Nova Scotia, Canada. The ramp is characterized by two major SSE-dipping faults accompanied by smaller antithetic and synthetic normal faults with a general ENE-WSW strike. The two major faults exhibit evidence of reverse deformation in their lower sections, transitioning to normal offsets in their upper portions. Smaller faults predominantly affect younger strata without evidence of reactivation. Fault throw analysis indicates coupled movement on the main faults during both reverse and normal deformation intervals. Structural analysis suggests that these structures initially formed as reverse faults due to halokinesis and were subsequently reactivated during oceanward salt migration. The timing of Atlantic margin halokinesis aligns broadly with previously documented large-scale kinematic reorganization periods, suggesting similar kinematic events triggered salt movements in the Penobscot area. The observed kinematic dichotomy at depth is crucial, highlighting the potential oversight of polyphase deformation in areas where seismic data only captures near-surface structures. Recognising salt's role in kinematic reactivation is vital, explaining inversion phenomena and generating economically important trapping structures globally. This study implies that reactivation of structures in passive margins may be more widespread than previously acknowledged, particularly if seismic data only captures upper portions of structures.
Journal Article
Winter weathering of fractured sedimentary rocks in a temperate climate: observation of freeze–thaw and thermal processes on the Niagara Escarpment, Hamilton, Ontario
by
Peace, Alexander L.
,
Eyles, Carolyn H.
,
Gage, Henry J.M.
in
Air temperature
,
Canada
,
carbonate rocks
2022
The Niagara Escarpment is a fractured Palaeozoic sedimentary cuesta, subject to year-round weathering in a temperate climate. We examined the temperature of the rock surface and fractures at three in situ sites with varying aspect and lithology, as well as the surface and interior of three control blocks maintained in outdoor conditions between December 2020 and March 2021. The objectives were to examine the interplay between freeze–thaw and thermal weathering in the winter months and to identify potential factors influencing these processes. Both diurnal-scale and prolonged freeze–thaw cycles differing in spatial and temporal extent were identified, coincident with periods of high moisture. We frequently observed rapid temperature changes (>1 °C min−1) at sites with strong insolation, which implies that the temperature regime is suitable for thermal shock and fatigue to occur. Site-specific factors, such as the aspect of the escarpment face and lithology, impact the mechanism and extent of weathering. Southeast-facing sites with high insolation are dominated by diurnal-scale freeze–thaw; west- and east-facing sites with lower insolation experience a more prominent prolonged freeze–thaw cycle. Across all sites there is a gradient between surface and fracture temperature that follows diurnal trends in air temperature and insolation. Variability in the surface-fracture gradient may enhance weathering processes by shifting the orientation and magnitude of stress, and by changing the spatial distribution of freezing and thawing. Our research indicates that site-specific factors and pre-existing fractures moderate the influence of air temperature and insolation on thermal gradients, and ultimately the weathering regime.
Journal Article
Geoscience Fieldwork in the Age of COVID-19 and Beyond: Commentary on the Development of a Virtual Geological Field Trip to Whitefish Falls, Ontario, Canada
by
Peace, Alexander L.
,
Gabriel, Jeremy J.
,
Eyles, Carolyn
in
Accessibility
,
Colleges & universities
,
Coronaviruses
2021
In response to the COVID-19 pandemic and resultant cancelation of geoscience fieldwork, as well as outstanding accessibility issues inherent in conducting fieldwork, we developed a virtual geological fieldtrip (VFT) to the Huronian age deposits in the Whitefish Falls area, Ontario, Canada. This region is a geologically significant site in which many Ontario universities conduct undergraduate teaching due to the high-quality exposures. In this contribution, we describe and comment on the development of this openly available resource, the motivations in doing so, the challenges faced, its pedagogical impact and relevance, as well as provide suggestions to others in the development of such resources. Our multimedia VFT combines 360° imagery, georeferenced data on integrated maps, and multi-scale imagery (aerial/drone, outcrop, and thin section images). The VFT was built using the Esri Storymaps platform, and thus offers us the opportunity to review the effectiveness of building such resources using this medium, as well as our approach to doing so. We conclude that the Esri Storymaps platform provides a sound medium for the dissemination of multimedia VFTs, but that some aspects of in-person fieldwork remain hard to replicate. Most notably, this affects “hands on experience” and specific activities such as geological mapping. In addition, while VFTs alleviate some accessibility barriers to geoscience fieldwork, substantial barriers remain that should remain the focus of both pedagogical and geoscience work.
Journal Article
Analysis of Spatial Association of Mineralization and Faults Through Fry and Fractal Modelling in Anarak Metallogenic Zone, Iran
by
Peace, Alexander L.
,
Sharifi, Mohammad
,
Rajabzadeh, Mohammad Ali
in
Basements
,
Chemistry/Food Science
,
Cretaceous
2025
The Anarak Metallogenic Zone is located in the western part of the Central East Iranian Microcontinent. Paleozoic ultramafic ophiolite and metamorphic complexes are the most common rocks in the Anarak region. Sedimentary and volcanic rocks of the Cretaceous and Eocene age cover the Paleozoic rocks. The polymetallic mineralization of the Anarak is often in related to the listvenitization of ultramafic rocks. These hydrothermal deposits are structurally controlled by basement faults. Rose diagrams and Fry analysis of structural data show an E-W trend in the distribution of faults and mineralization in the region. Analysis of the aeromagnetic data characterizes a west-east and northwest-southeast trend for deep faults that control the boundary of the Paleozoic intrusive and ultramafic rocks. The fusion of the multifractal technique and the lineament factor map identified high-potential zones of hydrothermal polymetallic mineralization in the Anarak region. Fieldwork demonstrates a clear relation between the W-E fault zones and the occurrence of polymetallic deposits in the region. The major faults trending west-east, especially the basement faults, play an important role in the distribution of polymetallic deposits in the Anarak region. In addition to their role as conduits for hydrothermal fluids, these faults were crucial in the emplacement of various host rocks, such as ultramafic and intrusive rocks. This study indicates that the combination of multifractal techniques with lineament factor map processing is an inexpensive and effective method of locating high-potential hydrothermal polymetallic mineralization zones, particularly deposits associated with listvenitization.
Journal Article
Compilation of Apatite Fission-Track Data from the Northeast Atlantic Realm: A Jigsaw Puzzle with Missing Pieces
by
Gröger, Heike
,
Schiffer, Christian
,
Peace, Alexander
in
Apatite
,
Evolution
,
Geological processes
2024
The northeast (NE) Atlantic is one of the best-studied geological regions in the world, incorporating a wide array of geological phenomena including extensional tectonism, passive margin development, orogenesis, and breakup-related volcanism. Apatite fission-track (AFT) thermochronology has been an important tool in studying the onshore evolution of the NE Atlantic for several decades. Unfortunately, large regional-scale studies are rare, making it difficult to study geological processes across the whole region. In this work, a compilation of published AFT data is presented from across Fennoscandia, the British Isles, East Greenland, and Svalbard, with the goal of providing an accessible overview of the data and how this vast body of work has improved our understanding of the region’s evolution. Alongside a review of previous literature, interpolated maps of fission track age and mean track length (MTL) highlight regional trends in the data that may result from major first-order processes and areas of low sample density that should be targeted for future study. Additionally, in the absence of metadata required for thermal history modeling, apparent exhumation rate estimates are calculated from available elevation profiles and the timing of major exhumation events inferred from “boomerang plots” of fission track ages against MTL values. Across Fennoscandia, data suggests that the opening of the NE Atlantic and exhumation of the margin have clearly played a major role in the thermal history of the upper crust. The remaining areas of Britain, Ireland, East Greenland, and Svalbard all present more complex trends consistent with a combination of the NE Atlantic’s opening and the interplay between specific bedrock geology of sampling sites and localized geological processes. Areas of low sample density include southern Britain, NE Britain, southeast Greenland, southern Svalbard, and Eastern Fennoscandia, each of which provides the natural laboratory required to answer many unresolved questions.
Journal Article
Structural Setting of the Sixtymile Gold District, Yukon, Canada: Insights into Regional Deformation and Mineralization from Field Mapping and 3D Magnetic Inversion
2022
The Sixtymile gold district, Yukon, Canada has been mined for placer gold since the late 19th century. However, increasing demand for gold has prompted exploration of new lode deposits. Previous studies in the nearby Klondike gold district have shown correlation between placer deposits and bedrock occurrences. Poor bedrock exposure and a complex deformation history, however, make it difficult to determine structural controls on gold mineralization. Through structural analysis involving mesoscopic-scale field observations of fractures, faults, foliation, and folds, and 3D geophysical inversion, the goal of this study was to determine the structural setting of the Sixtymile district to enhance discovery success. Structural measurements in the Glacier Creek, Miller Creek, Bedrock Creek, and Sixtymile River areas show the relationships among the orientations of foliation, fractures, and veins. In most localities, veins are found both parallel and at high angles to foliation, and there is generally a weaker correlation between fractures and veins compared to between foliation and veins. This correlation between foliation and veins is corroborated by inferred gold-bearing horizons from gold assay data. Outcrops of oblique reverse and strike-slip faults, possibly related to a larger-scale thrust-zone, and to the left-lateral Sixtymile-Pika Fault, respectively, were documented for the first time in this study. The results of the 3D probabilistic inversion of total magnetic intensity data for magnetic susceptibility show that magnetic susceptibility highs are preferentially associated with volcanics, but also point to possible intrusive bodies or hydrothermal alteration zones associated with mineralization. A geologic cross-section through the lithologies demonstrates highly variable deformation styles, including extensive folding, possibly indicative of a multiphase deformational history necessitating further, more detailed investigations of the area.
Journal Article