Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Peana, Alessandra T."
Sort by:
Sleep and the Pharmacotherapy of Alcohol Use Disorder: Unfortunate Bedfellows. A Systematic Review With Meta-Analysis
Sleep disorders are commonly associated with acute and chronic use of alcohol and with abstinence. To date, there are four approved drugs to treat alcohol use disorder (AUD): disulfiram, acamprosate, naltrexone, and nalmefene. These AUD therapies reduce the craving and risk of relapse into heavy drinking, but little is known about their effect on sleep. As recent evidences indicate a crucial role of sleep disorders in AUD, claiming that sleep problems may trigger alcohol abuse and relapses, it is fundamental to clarify the impact of those drugs on the sleep quality of AUD patients. This systematic review aims to answer the question: how does the pharmacotherapy for AUD affect sleep? We searched PubMed, Embase, CINAHL Plus, Cochrane, and Scopus using sleep- and AUD pharmacotherapy-related keywords. The articles included were appraised using the CASP checklists, and the risk of bias was assessed following the Cochrane risk-of-bias assessment tool. Finally, we pooled sleep outcomes in a meta-analysis to measure the overall effect. We included 26 studies: only three studies focused on sleep as a main outcome, two with polysomnography (objective measurement), and one with subjective self-reported sleep, while all the other studies reported sleep problems among the adverse effects (subjective report). The only study available on disulfiram showed reduced REM sleep. Acamprosate showed no/little effect on self-reported sleep but improved sleep continuity and architecture measured by polysomnography. The two opioidergic drugs naltrexone and nalmefene had mainly detrimental effect on sleep, giving increased insomnia and/or somnolence compared with placebo, although not always significant. The meta-analysis confirmed significantly increased somnolence and insomnia in the naltrexone group, compared with the placebo. Overall, the currently available evidences show more sleep problems with the opioidergic drugs (especially naltrexone), while acamprosate seems to be well tolerated or even beneficial. Acamprosate might be a more suitable choice when patients with AUD report sleep problems. Due to the paucity of information available, and with the majority of results being subjective, more research on this topic is needed to further inform the clinical practice, ideally with more objective measurements such as polysomnography.
Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol’s Action on Mesolimbic Dopamine
Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via μ opioid receptor (μOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA μORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption.
Inhibition of Morphine- and Ethanol-Mediated Stimulation of Mesolimbic Dopamine Neurons by Withania somnifera
Morphine- and ethanol-induced stimulation of neuronal firing of ventral tegmental area (VTA) dopaminergic neurons and of dopamine (DA) transmission in the shell of the nucleus accumbens (AcbSh) represents a crucial electrophysiological and neurochemical response underlying the ability of these compounds to elicit motivated behaviors and trigger a cascade of plasticity-related biochemical events. Previous studies indicate that the standardized methanolic extract of roots (WSE) prevents morphine- and ethanol-elicited conditioned place preference and oral ethanol self-administration. Aim of the present research was to investigate whether WSE may also interfere with the ability of morphine and ethanol to stimulate VTA dopaminergic neurons and thus AcbSh DA transmission as assessed in male Sprague-Dawley rats by means of patch-clamp recordings in mesencephalic slices and brain microdialysis, respectively. Morphine and ethanol significantly stimulated spontaneous firing rate of VTA neurons and DA transmission in the AcbSh. WSE, at concentrations (200-400 μg/ml) that significantly reduce spontaneous neuronal firing of VTA DA neurons via a GABA - but not GABA -mediated mechanism, suppressed the stimulatory actions of both morphine and ethanol. Moreover, administration of WSE at a dose (75 mg/kg) that fails to affect basal DA transmission, significantly prevented both morphine- and ethanol-elicited increases of DA in the AcbSh. Overall, these results highlight the ability of WSE to interfere with morphine- and ethanol-mediated central effects and suggest a mechanistic interpretation of the efficacy of this extract to prevent the motivational properties of these compounds.
Mystic Acetaldehyde: The Never-Ending Story on Alcoholism
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
A Study on the Combination of Enzyme Stabilizers and Low Temperatures in the Long-Term Storage of Glutamate Biosensor
The importance of physiological glutamate has been widely demonstrated in cognitive and memory processes, as well as in neurotransmission. The involvement of physiological glutamate in several pathologies has also been established. Therefore, analytical devices for studying variations in physiological glutamate are of fundamental importance, particularly in preclinical studies. The necessary knowledge to develop and characterize biosensors for glutamate detection is often restricted to only a few research groups. However, many more groups have sought to implant such analytical devices to study the glutamatergic system in vivo. On this basis, a series of studies was undertaken to explore the medium-term storage of biosensors, thereby allowing their usage results to be differentiated from their construction and characterization processes to facilitate the wider diffusion and use of such sensors. Therefore, it has become vital to determine the best storage conditions to extend the life and functionality of these biosensors, especially due to the diachronic instability of the enzyme present on the surface. In the present study, we analyzed the impact of glycols, such as glycerol and triethylene glycol, as enzyme stabilizers coupled with long-term storage at low temperatures (−20 and −80 °C) on biosensor performance. The biosensors were observed for 5 months and evaluated for their enzymatic activity by measuring the VMAX(app) and KM(app). The analytical features were also evaluated in terms of the Linear Region Slope, which is one the most important parameters for indicating the efficiency and the sensitivity of biosensors. Interestingly, both glycols proved to be capable of increasing enzymatic activity and maintaining good biosensor efficiency over time. Moreover, the combination with low-temperature storage highlighted the different behaviors of the two glycols. In particular, glycerol was more effective in stabilizing the enzyme and maintaining analytical performance when the biosensors were stored at −20 °C. Instead, triethylene glycol performed the same function as glycerol but when the biosensors were stored at −80 °C.
Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection
The 1,2,3,4-tetrahydroisoquinolines (TIQs) are compounds frequently described as alkaloids that can be found in the human body fluids and/or tissues including the brain. In most circumstances, TIQs may be originated as a consequence of reactions, known as Pictet-Spengler condensations, between biogenic amines and electrophilic carbonyl compounds, including ethanol’s main metabolite, acetaldehyde. Several TIQs may also be synthesized enzymatically whilst others may be formed in the body as by-products of other compounds including TIQs themselves. The biological actions of TIQs appear critically dependent on their metabolism, and nowadays, among TIQs, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), N-methyl-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (N-methyl-(R)-salsolinol), 1-[(3,4-dihydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol (norlaudanosoline or tetrahydropapaveroline or THP) and 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) are considered as those endowed with the most potent neurotoxic actions. However, it remains to be established whether a continuous exposure to TIQs or to their metabolites might carry toxicological consequences in the short- or long-term period. Remarkably, recent findings suggest that some TIQs such as (1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol) (higenamine) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ) as well as N-methyl-tetrahydroisoquinoline (N-methyl-TIQ) exert unique neuroprotective and neurorestorative actions. The present review article provides an overview on these aspects of TIQs and summarizes those that presently appear the most significant highlights on this puzzling topic.
From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol
In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.
Effect of l-cysteine on acetaldehyde self-administration
Acetaldehyde (ACD), the first metabolite of ethanol, has been implicated in several behavioural actions of alcohol, including its reinforcing effects. Recently, we reported that l-cysteine, a sequestrating agent of ACD, reduced oral ethanol self-administration and that ACD was orally self-administered. This study examined the effects of l-cysteine pre-treatment during the acquisition and maintenance phases of ACD (0.2%) self-administration as well as on the deprivation effect after ACD extinction and on a progressive ratio (PR) schedule of reinforcement. In a separate PR schedule of reinforcement, the effect of l-cysteine was assessed on the break-point produced by ethanol (10%). Furthermore, we tested the effect of l-cysteine on saccharin (0.2%) reinforcement. Wistar rats were trained to self-administer ACD by nose poking on a fixed ratio (FR1) schedule in 30-min daily sessions. Responses on an active nose-poke caused delivery of ACD solution, whereas responses on an inactive nose-poke had no consequences. l-cysteine reduced the acquisition (40 mg/kg), the maintenance and the deprivation effect (100 mg/kg) of ACD self-administration. Furthermore, at the same dose, l-cysteine (120 mg/kg) decreased both ACD and ethanol break point. In addition, l-cysteine was unable to suppress the different responses for saccharin, suggesting that its effect did not relate to an unspecific decrease in a general motivational state. Compared to saline, l-cysteine did not modify responses on inactive nose-pokes, suggesting an absence of a non-specific behavioural activation. Taken together, these results could support the hypotheses that ACD possesses reinforcing properties and l-cysteine reduces motivation to self-administer ACD.
Role of ethanol-derived acetaldehyde in operant oral self-administration of ethanol in rats
Rationale The role of ethanol-derived acetaldehyde has not been examined yet on performance in a model of operant oral self-administration. However, previous studies reported that an acetaldehyde-sequestering agent, d -penicillamine (DP) and an inhibitor of catalase-mediated acetaldehyde production, 3-amino-1,2,4-triazole (3-AT) reduce voluntary ethanol consumption. Objectives The aim of our investigation was to evaluate the effects of DP and 3-AT on acquisition and maintenance of oral operant ethanol self-administration. Methods Using operant chambers, rats learned to nose poke in order to receive ethanol solution (5–10 % v / v ) under an FR1 schedule of reinforcement in which discrete light and tone cues were presented during ethanol delivery. Results DP and 3-AT impair the acquisition of ethanol self-administration, whereas its maintenance is not affected neither by drug given alone for both 10 or 5 % ethanol nor by drugs association for 5 % ethanol. Moreover, when the concentration of ethanol was diminished from 10 to 5 %, rats increased the rate of self-administration behaviour. Conclusions These findings suggest that brain acetaldehyde plays a critical role during acquisition of operant self-administration in ethanol-naïve rats. In contrast, during the maintenance phase, acetaldehyde could contribute to ethanol self-administration by a combined mechanism: On one hand, its lack (by DP or 3-AT) might result in further ethanol-seeking and taking and, on the other, inhibition of ethanol metabolism (by 3-AT) might release an action of the un-metabolised fraction of ethanol that does not overall result in compromising maintenance of ethanol self-administration.
Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation
Rationale Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK 1/2 ) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK 1/2 phosphorylation in this area are still controversial. Objectives In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK 1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D 1 and μ-opioid receptors in Sprague-Dawley rats and CD-1 mice. Methods The pERK 1/2 expression was assessed by immunohistochemistry. Results In rats, morphine decreased AcbSh and AcbC pERK 1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK 1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK 1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. Conclusions These findings confirm the differential effects of morphine in rats and mice Acb and that D 1 receptors exert a facilitatory role on ERK 1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D 1 -dependent pERK 1/2 expression discloses the stimulatory influence of morphine on ERK 1/2 phosphorylation and that the morphine’s ability to decrease pERK 1/2 expression is mediated by Acb μ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK 1/2 in the Acb.