Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Pearce, Christof"
Sort by:
Response of Arctic benthic foraminiferal traits to past environmental changes
The Arctic is subjected to all-encompassing disruptions in marine ecosystems caused by anthropogenic warming. To provide reliable estimates of how future changes will affect the ecosystems, knowledge of Arctic marine ecosystem responses to past environmental variability beyond the instrumental era is essential. Here, we present a novel approach on how to evaluate the state of benthic marine biotic conditions during the deglacial and Holocene period on the Northeast Greenland shelf. Benthic foraminiferal species were assigned traits (e.g., oxygen tolerance, food preferences) aiming to identify past faunal changes as a response to external forcing mechanisms. This approach was applied on sediment cores from offshore Northeast Greenland. We performed numerical rate-of-change detection to determine significant changes in the benthic foraminiferal traits. That way, the significant abrupt trait changes can be assessed across sites, providing a better understanding of the impact of climate drivers on the traits. Our results demonstrate that during the last ~ 14,000 years, bottom water oxygen is the main factor affecting the variability in the benthic foraminiferal faunas in this area. Our results show that significant changes in the traits correspond to drastic climate perturbations. Specifically, the deglacial-Holocene transition and mid-Holocene warm period exhibited significant change, with several trait turnovers.
Holocene shifts in marine mammal distributions around Northern Greenland revealed by sedimentary ancient DNA
Arctic marine ecosystems have undergone notable reconfigurations in response to Holocene climate and environmental changes. Yet our understanding of how marine mammal occurrence was impacted remains limited, due to their relative scarcity in the fossil record. We reconstruct the occurrence of marine mammals across the past 12,000 years through detections based on sedimentary ancient DNA from four marine sediment cores collected around Northern Greenland, and integrate the findings with local and regional environmental proxy records. Our findings indicate a close association between marine mammals at densities detectable in marine sediments and the deglaciation of high Arctic marine environments at the onset of the Holocene. Further, we identify air temperature and changes in sea ice cover as significant drivers of community change across time. Several marine mammals are detected in the sediments earlier than in the fossil record, for some species by several thousand years. During the Early-to-Mid Holocene, a period of warmer climate, we record northward distribution shifts of temperate and low-arctic marine mammal species. Our findings provide unique, long-term baseline data on the occurrence of marine mammals around Northern Greenland, enabling insights into past community dynamics and the effects of Holocene climatic shifts on the region’s marine ecosystems. Arctic marine ecosystems have experienced significant change through the Holocene. Here, the authors used seda DNA from Northern Greenland to reconstruct marine mammal occurrence, demonstrating the impact of air temperature and sea ice cover over the past 12000 years.
The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland
Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW’s retrograde backslope forming small retreat ridges to 680 m current depth (∼730–800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped. Submarine glacial landforms are used to reconstruct the Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland. Here, a large grounding-zone wedge at the mouth of Petermann fjord indicates a period of glacier stability, with final retreat likely driven by marine ice cliff instability.
Microbial turnover times in the deep seabed studied by amino acid racemization modelling
The study of active microbial populations in deep, energy-limited marine sediments has extended our knowledge of the limits of life on Earth. Typically, microbial activity in the deep biosphere is calculated by transport-reaction modelling of pore water solutes or from experimental measurements involving radiotracers. Here we modelled microbial activity from the degree of D:L-aspartic acid racemization in microbial necromass (remains of dead microbial biomass) in sediments up to ten million years old. This recently developed approach (D:L-amino acid modelling) does not require incubation experiments and is highly sensitive in stable, low-activity environments. We applied for the first time newly established constraints on several important input parameters of the D:L-amino acid model, such as a higher aspartic acid racemization rate constant and a lower cell-specific carbon content of sub-seafloor microorganisms. Our model results show that the pool of necromass amino acids is turned over by microbial activity every few thousand years, while the turnover times of vegetative cells are in the order of years to decades. Notably, microbial turnover times in million-year-old sediment from the Peru Margin are up to 100-fold shorter than previous estimates, highlighting the influence of microbial activities on element cycling over geologic time scales.
Late Holocene Paleomagnetic Secular Variation in the Chukchi Sea, Arctic Ocean
The geomagnetic field behavior in polar regions remains poorly understood and documented. Although a number of Late Holocene paleomagnetic secular variation (PSV) records exist from marginal settings of the Amerasian Basin in the Arctic Ocean, their age control often relies on a handful of radiocarbon dates to constrain ages over the past 4,200 years. Here we present well‐dated Late Holocene PSV records from two sediment cores recovered from the Chukchi Sea, Arctic Ocean. The records are dated using 26 14C measurements, with local marine reservoir corrections calibrated using tephra layers from the 3.6 cal ka BP Aniakchak eruption in Northern Alaska. These 14C‐based chronologies are extended into the post‐bomb era using caesium‐137 dating, and mercury isochrons. Paleomagnetic measurements and rock magnetic analyses reveal stable characteristic remanent magnetization directions, and a magnetic mineralogy dominated by low‐coercivity minerals. The PSV records conform well to global spherical harmonic field model outputs. Centennial to millennial scale directional features are synchronous between the cores and other Western Arctic records from the area. Due to the robust chronology, these new high‐resolution PSV records provide a valuable contribution to the characterization of geomagnetic field behavior in the Arctic over the past few thousand years, and can aid in developing age models for suitable sediments found in this region. Plain Language Summary Investigating past changes in Earth's magnetic field is important to understand how the field is generated and varies through time. Marine sediments can record geomagnetic field changes, and can be used to reconstruct past field behavior as long as they are well dated. There are few such records from the Arctic, particularly ones that have a robust chronology covering the past few thousand years. This study provides two new sedimentary paleomagnetic records from the Chukchi Sea of the Arctic Ocean, which were dated using radiocarbon and caesium‐137. Behavior of the geomagnetic field over the past 4,200 years as preserved in the studied sediments matches the predictions of geomagnetic field models, and is also similar to other regional sedimentary records. Features that current models do not capture provide new information on variations of the geomagnetic field, and can be used to improve the models, and to date sediments from the region. Key Points Geomagnetic field directions are reconstructed for two sediment cores from the Chukchi Sea for the past 4,200 years The geochronology is based on 26 radiocarbon dates, 137Cs and tephra from the Aniakchak CFE II eruption The records capture paleomagnetic features recognized in the western Arctic and could aid future geochronology
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow ( ∼  53 m) strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data) have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9–11.7 cal ka BP). Here we provide new information on the deglacial and post-glacial evolution of the Arctic–Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b) and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.
Evidence for influx of Atlantic water masses to the Labrador Sea during the Last Glacial Maximum
The Last Glacial Maximum (LGM, 23–19,000 year BP) designates a period of extensive glacial extent and very cold conditions on the Northern Hemisphere. The strength of ocean circulation during this period has been highly debated. Based on investigations of two marine sediment cores from the Davis Strait (1033 m water depth) and the northern Labrador Sea (2381 m), we demonstrate a significant influx of Atlantic-sourced water at both subsurface and intermediate depths during the LGM. Although surface-water conditions were cold and sea-ice loaded, the lower strata of the (proto) West Greenland Current carried a significant Atlantic (Irminger Sea-derived) Water signal, while at the deeper site the sea floor was swept by a water mass comparable with present Northeast Atlantic Deep Water. The persistent influx of these Atlantic-sourced waters entrained by boundary currents off SW Greenland demonstrates an active Atlantic Meridional Overturning Circulation during the LGM. Immediately after the LGM, deglaciation was characterized by a prominent deep-water ventilation event and potentially Labrador Sea Water formation, presumably related to brine formation and/or hyperpycnal meltwater flows. This was followed by a major re-arrangement of deep-water masses most likely linked to increased overflow at the Greenland-Scotland Ridge after ca 15 kyr BP.
Ocean lead at the termination of the Younger Dryas cold spell
The Younger Dryas (YD) cold interval is one of the most abrupt climate events of Earth’s recent history. The origin of this rapid, severe cooling episode is still widely debated, but it was probably triggered by a large freshwater influx to the North Atlantic resulting in disruption of the Atlantic Meridional Overturning Circulation. The YD termination, despite having been even more abrupt than the onset has, however, received significantly less attention. Here using multi-proxy data from a high-resolution marine sediment record, we present evidence for a gradual decrease of the Labrador Current influence, northward migration of the Gulf Stream oceanic front and a rapid decline of sea-ice cover at the YD termination. Our data indicate a stepwise sequence of events with changes in ocean circulation clearly preceding those in atmospheric conditions, in contrast to the hitherto commonly assumed single-event rapid climatic shift at the YD–Holocene transition. The abrupt ending of the Younger Dryas cooling episode marked the onset of the present interglacial and was the most prominent climate change in the Earth’s recent history. This study shows evidence for a sequence of events with a leading role of the ocean at the transition into the present day warm Holocene epoch.
Seasonal sea-ice in the Arctic’s last ice area during the Early Holocene
According to climate models, the Lincoln Sea, bordering northern Greenland and Canada, will be the final stronghold of perennial Arctic sea-ice in a warming climate. However, recent observations of prolonged periods of open water raise concerns regarding its long-term stability. Modelling studies suggest a transition from perennial to seasonal sea-ice during the Early Holocene, a period of elevated global temperatures around 10,000 years ago. Here we show marine proxy evidence for the disappearance of perennial sea-ice in the southern Lincoln Sea during the Early Holocene, which suggests a widespread transition to seasonal sea-ice in the Arctic Ocean. Seasonal sea-ice conditions were tightly coupled to regional atmospheric temperatures. In light of anthropogenic warming and Arctic amplification our results suggest an imminent transition to seasonal sea-ice in the southern Lincoln Sea, even if the global temperature rise is kept below a threshold of 2 °C compared to pre-industrial (1850–1900).
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal kyr BP was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution, combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid–late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 57 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed across a more than 1.5 m long sediment sequence. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca. 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically carbon-old Pacific waters, and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm kyr−1 throughout the last 4000 years, and the chronology presented here provides a solid base for high-resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.