Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Pedone, Alfonso"
Sort by:
Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and its Assessment
by
Hijiya, Hiroyuki
,
Pedone, Alfonso
,
Urata, Shingo
in
119/118
,
639/301/1034/1035
,
639/638/563/981
2020
The comprehension of the nonlinear effects provided by mixed alkali effect (MAE) in oxide glasses is useful to optimize glass compositions to achieve specific properties that depend on the mobility of ions, such as the chemical durability, glass transition temperature, viscosity and ionic conductivity. Although molecular dynamics (MD) simulations have already been applied to investigate the MAE on silicates, less effort has been devoted to study such phenomenon in mixed alkali aluminosilicate glasses where alkali cations can act both as modifiers, forming non-bridging oxygens and percolation channels, and as charge compensator of the AlO
4
−
units present in the network. Moreover, the ionic conductivity has not been computed yet; thus, the accuracy of the atomistic simulations in reproducing the MAE on the property is still open to question. In this work, we have validated five major interatomic potentials for the classical MD simulations by modelling the structure, density, glass transition temperature and ionic conductivity for three aluminosilicate glasses, (25 − x)Na
2
O − x(K
2
O) − 10(Al
2
O
3
) − 65(SiO
2
) (x = 0, 12.5, 25). It was observed that only the core-shell (CS) polarizable force field well reproduces the experimentally measured MAE on
T
g
and the ionic conductivity as well as the higher conductivity of single sodium aluminosilicate glass at low temperature and the higher conductivity of single potassium aluminosilicate glass at high temperature. The MAE is related to the suppression of jump events of the alkaline ions between dissimilar sites in the percolation channels consisting of both sodium and potassium ions as in the case of alkaline silicates. The superior reproducibility of the CS potential is originated from the larger and the flexible ring structures due to the smaller Si-O-Si inter-tetrahedra angle, creating appropriate percolation channels for ion conductivity. We also report detailed assessments for using the potential models including the CS potential for investigating MAE on aluminosilicates.
Journal Article
SERS, XPS and DFT Study of Xanthine Adsorbed on Citrate-Stabilized Gold Nanoparticles
by
Muniz-Miranda, Francesco
,
Pedone, Alfonso
,
Muniz-Miranda, Maurizio
in
Adsorption
,
Carbon
,
Glass substrates
2019
We have studied the adsorption of xanthine, a nucleobase present in human tissue and fluids that is involved in important metabolic processes, on citrate-reduced gold colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS), absorption, and X-ray photoelectron spectroscopy (XPS) measurements, along with density functional theory (DFT) calculations. The citrate anions stabilize the colloidal suspensions by strongly binding the gold nanoparticles. However, these anions do not impair the adsorption of xanthine on positively-charged active sites present on the metal surface. We have obtained the Fourier transform (FT)-SERS spectra of adsorbed xanthine by laser excitation in the near infrared spectral region, where interference due to fluorescence emission does not usually occur. In fact, the addition of chloride ions to the Au/xanthine colloid induces the aggregation of the gold nanoparticles, whose plasmonic band is shifted to the near infrared region where there is the exciting laser line of the FT–Raman instrument. Hence, this analytical approach is potentially suitable for spectroscopic determination of xanthine directly in body fluids, avoiding fluorescence phenomena induced by visible laser irradiation.
Journal Article
Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils
by
Tavanti, Francesco
,
Menziani, Maria Cristina
,
Pedone, Alfonso
in
Aggregates
,
Alzheimer's disease
,
Amyloid - chemistry
2018
One of the principal hallmarks of Alzheimer’s disease (AD) is related to the aggregation of amyloid-β fibrils in an insoluble form in the brain, also known as amyloidosis. Therefore, a prominent therapeutic strategy against AD consists of either blocking the amyloid aggregation and/or destroying the already formed aggregates. Natural products have shown significant therapeutic potential as amyloid inhibitors from in vitro studies as well as in vivo animal tests. In this study, the interaction of five natural biophenols (curcumin, dopamine, (-)-epigallocatechin-3-gallate, quercetin, and rosmarinic acid) with amyloid-β(1–40) fibrils has been studied through computational simulations. The results allowed the identification and characterization of the different binding modalities of each compounds and their consequences on fibril dynamics and aggregation. It emerges that the lateral aggregation of the fibrils is strongly influenced by the intercalation of the ligands, which modulates the double-layered structure stability.
Journal Article
Can DFT Calculations Provide Useful Information for SERS Applications?
by
Muniz-Miranda, Francesco
,
Pedone, Alfonso
,
Muniz-Miranda, Maurizio
in
applications
,
Corrosion
,
Corrosion inhibitors
2023
Density functional theory (DFT) calculations allow us to reproduce the SERS (surface-enhanced Raman scattering) spectra of molecules adsorbed on nanostructured metal surfaces and extract the most information this spectroscopy is potentially able to provide. The latter point mainly concerns the anchoring mechanism and the bond strength between molecule and metal as well as the structural and electronic modifications of the adsorbed molecule. These findings are of fundamental importance for the application of this spectroscopic technique. This review presents and discusses some SERS–DFT studies carried out in Italy as a collaboration between the universities of Modena and Reggio-Emilia and of Florence, giving an overview of the information that we can extract with a combination of experimental SERS spectra and DFT modeling. In addition, a selection of the most recent studies and advancements on the DFT approach to SERS spectroscopy is reported with commentary.
Journal Article
Quantum-Chemistry Study of the Hydrolysis Reaction Profile in Borate Networks: A Benchmark
2024
This investigation involved an ab initio and Density Functional Theory (DFT) analysis of the hydrolysis mechanism and energetics in a borate network. The focus was on understanding how water molecules interact with and disrupt the borate network, an area where the experimental data are scarce and unreliable. The modeled system consisted of two boron atoms, bridging oxygen atoms, and varying numbers of water molecules. This setup allows for an exploration of hydrolysis under different environmental conditions, including the presence of OH− or H+ ions to simulate basic or acidic environments, respectively. Our investigation utilized both ab initio calculations at the MP2 and CCSD(T) levels and DFT with a range of exchange–correlation functionals. The findings indicate that the borate network is significantly more susceptible to hydrolysis in a basic environment, with respect to an acidic or to a neutral pH setting. The inclusion of explicit water molecules in the calculations can significantly affect the results, depending on the nature of the transition state. In fact, some transition states exhibited closed-ring configurations involving water and the boron–oxygen–boron network; in these cases, there were indeed more water molecules corresponding to lower energy barriers for the reaction, suggesting a crucial role of water in stabilizing the transition states. This study provides valuable insights into the hydrolysis process of borate networks, offering a detailed comparison between different computational approaches. The results demonstrate that the functionals B3LYP, PBE0, and wB97Xd closely approximated the reference MP2 and CCSD(T) calculated reaction pathways, both qualitatively in terms of the mechanism, and quantitatively in terms of the differences in the reaction barriers within the 0.1–0.2 eV interval for the most plausible reaction pathways. In addition, CAM-B3LYP also yielded acceptable results in all cases except for the most complicated pathway. These findings are useful for guiding further computational studies, including those employing machine learning approaches, and experimental investigations requiring accurate reference data for hydrolysis reactions in borate networks.
Journal Article
New Insight into Mixing Fluoride and Chloride in Bioactive Silicate Glasses
2018
Adding fluoride into bioactive glasses leads to fluorapatite formation and a decrease in glass transition temperature. Recently, chloride has been introduced into glasses as an alternative to fluoride. The presence of the large chloride ion lowers glass crystallisation tendency and increases glass molar volume, which effectively facilitates glass degradation and bone-bonding apatite-like layer formation. However, there is no information regarding the effect of mixing fluoride and chloride on the glass structure and properties. This study aims to synthesize mixed fluoride and chloride containing bioactive glasses; investigate the structural role of fluoride and chloride and their effects on glass properties. The chloride content measurements reveal that 77–90% of chloride was retained in these Q
2
type glasses. Glass transition temperature reduced markedly with an increase in CaX
2
(X = F + Cl) content, while the glass molar volume increased.
29
Si MAS-NMR results show that the incorporation of mixed fluoride and chloride did not cause significant change in the polymerization of the silicate network and no detectable concentration of Si-F/Cl bands were present. This agrees with
19
F NMR spectra showing that F existed as F-Ca(n) species.
Journal Article
SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica
by
Muniz-Miranda, Francesco
,
Pedone Alfonso
,
Gellini Cristina
in
2,2’-bipyridine
,
Adatoms
,
Adsorption
2018
Highly stable Ag–SiO2 nanoparticle composites were first obtained by laser ablation of a silver target in an aqueous colloidal dispersion of silica and examined by UV–vis absorption spectroscopy, transmission electron microscopy and Raman spectroscopy. The surface enhanced Raman scattering (SERS) activity of these nanocomposites was tested using 2,2’-bipyridine as a molecular reporter and excitation in the visible and near-IR spectral regions. The computational DFT approach provided evidence of ligand adsorption on positively charged adatoms of the silver nanostructured surface, in a very similar way to the metal/molecule interaction occurring in the corresponding Ag(I) coordination compound.
Journal Article
DFT and TD-DFT Study of the Chemical Effect in the SERS Spectra of Piperidine Adsorbed on Silver Colloidal Nanoparticles
by
Muniz-Miranda, Francesco
,
Menziani, Maria
,
Pedone, Alfonso
in
Absorption spectra
,
Adsorption
,
Ag nanoparticles
2022
The surface-enhanced Raman scattering (SERS) spectra of piperidine adsorbed on silver/chloride colloids were studied by a combined density functional theory (DFT)/time dependent DFT (TD-DFT) approach. The mechanism of chemical enhancement on the Raman signals is due to at least two contributions: the first comes from the changes in the molecular force constants and the dynamic polarizabilities of the normal modes, when the molecule is chemisorbed. DFT calculations satisfactorily reproduce the SERS spectra of piperidine adsorbed on silver, showing that the species formed on the silver particle is a complex formed by a deprotonated piperidine linked to a silver cation. A second contribution to the SERS chemical enhancement is due to a resonance Raman effect occurring when the wavelength of the Raman excitation falls within the electronic excitation band of the molecule/metal complex. Actually, the SERS spectra of piperidine show a significant dependence on the wavelength of the laser excitation, with a marked enhancement in the green-light region. TD-DFT calculations on the most-probable complex explain this behavior, because a strong excitation band of the complex is calculated in the green spectral region. This pinpoints that a resonance between the exciting radiation and the absorption band of this complex is responsible for this enhancement effect.
Journal Article
Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles
by
Tavanti, Francesco
,
Menziani, Maria Cristina
,
Pedone, Alfonso
in
Adsorption
,
Algorithms
,
Amino acids
2019
A multiscale molecular dynamics simulation study has been carried out in order to provide in-depth information on the adsorption of hemoglobin, myoglobin, and trypsin over citrate-capped AuNPs of 15 nm diameter. In particular, determinants for single proteins adsorption and simultaneous adsorption of the three types of proteins considered have been studied by Coarse-Grained and Meso-Scale molecular simulations, respectively. The results, discussed in the light of the controversial experimental data reported in the current experimental literature, have provided a detailed description of the (i) recognition process, (ii) number of proteins involved in the early stages of corona formation, (iii) protein competition for AuNP adsorption, (iv) interaction modalities between AuNP and protein binding sites, and (v) protein structural preservation and alteration.
Journal Article
Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange Molecular Dynamics Simulations
by
Tavanti, Francesco
,
Menziani, Maria Cristina
,
Pedone, Alfonso
in
Amyloid
,
Amyloid beta-Peptides - chemistry
,
Amyloid beta-Peptides - metabolism
2020
Amyloid-β aggregation is one of the principal causes of amyloidogenic diseases that lead to the loss of neuronal cells and to cognitive impairments. The use of gold nanoparticles treating amyloidogenic diseases is a promising approach, because the chemistry of the gold surface can be tuned in order to have a specific binding, obtaining effective tools to control the aggregation. In this paper, we show, by means of Replica Exchange Solute Tempering Molecular Simulations, how electrostatic interactions drive the absorption of Amyloid-β monomers onto citrates-capped gold nanoparticles. Importantly, upon binding, amyloid monomers show a reduced propensity in forming β-sheets secondary structures that are characteristics of mature amyloid fibrils.
Journal Article