Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Peer, Komal"
Sort by:
Evaluation of Menstrual Cycle Tracking Behaviors in the Ovulation and Menstruation Health Pilot Study: Cross-Sectional Study
Menstrual cycle tracking apps (MCTAs) have potential in epidemiological studies of women's health, facilitating real-time tracking of bleeding days and menstrual-associated signs and symptoms. However, information regarding the characteristics of MCTA users versus cycle nontrackers is limited, which may inform generalizability. We compared characteristics among individuals using MCTAs (app users), individuals who do not track their cycles (nontrackers), and those who used other forms of menstrual tracking (other trackers). The Ovulation and Menstruation Health Pilot Study tested the feasibility of a digitally enabled evaluation of menstrual health. Recruitment occurred between September 2017 and March 2018. Menstrual cycle tracking behavior, demographic, and general and reproductive health history data were collected from eligible individuals (females aged 18-45 years, comfortable communicating in English). Menstrual cycle tracking behavior was categorized in 3 ways: menstrual cycle tracking via app usage, that via other methods, and nontracking. Demographic factors, health conditions, and menstrual cycle characteristics were compared across the menstrual tracking method (app users vs nontrackers, app users vs other trackers, and other trackers vs nontrackers) were assessed using chi-square or Fisher exact tests. In total, 263 participants met the eligibility criteria and completed the digital survey. Most of the cohort (n=191, 72.6%) was 18-29 years old, predominantly White (n=170, 64.6%), had attained 4 years of college education or higher (n= 209, 79.5%), and had a household income below US $50,000 (n=123, 46.8%). Among all participants, 103 (39%) were MCTA users (app users), 97 (37%) did not engage in any tracking (nontrackers), and 63 (24%) used other forms of tracking (other trackers). Across all groups, no meaningful differences existed in race and ethnicity, household income, and education level. The proportion of ever-use of hormonal contraceptives was lower (n=74, 71.8% vs n=87, 90%, P=.001), lifetime smoking status was lower (n=6, 6% vs n=15, 17%, P=.04), and diagnosis rate of gastrointestinal reflux disease (GERD) was higher (n=25, 24.3% vs n=12, 12.4%, P=.04) in app users than in nontrackers. The proportions of hormonal contraceptives ever used and lifetime smoking status were both lower (n=74, 71.8% vs n=56, 88.9%, P=.01; n=6, 6% vs n=11, 17.5%, P=.02) in app users than in other trackers. Other trackers had lower proportions of ever-use of hormonal contraceptives (n=130, 78.3% vs n=87, 89.7%, P=.02) and higher diagnostic rates of heartburn or GERD (n=39, 23.5% vs n=12, 12.4%, P.03) and anxiety or panic disorder (n=64, 38.6% vs n=25, 25.8%, P=.04) than nontrackers. Menstrual cycle characteristics did not differ across all groups. Our results suggest that app users, other trackers, and nontrackers are largely comparable in demographic and menstrual cycle characteristics. Future studies should determine reasons for tracking and tracking-related behaviors to further understand whether individuals who use MCTAs are comparable to nontrackers.
Digital Global Recruitment for Women’s Health Research: Cross-sectional Study
With the increased popularity of mobile menstrual tracking apps and boosted Facebook posts, there is a unique opportunity to recruit research study participants from across the globe via these modalities to evaluate women's health. However, no studies to date have assessed the feasibility of using these recruitment sources for epidemiological research on ovulation and menstruation. The objective of this study was to assess the feasibility of recruiting a diverse sample of women to an epidemiological study of ovulation and menstruation (OM) health (OM Global Health Study) using digital recruitment sources. The feasibility and diversity were assessed via click and participation rates, geographic location, BMI, smoking status, and other demographic information. Participants were actively recruited via in-app messages using the menstrual tracking app Clue (BioWink GmbH) and a boosted Facebook post by DivaCup (Diva International Inc.). Other passive recruitment methods also took place throughout the recruitment period (eg, email communications, blogs, other social media). The proportion of participants who visited the study website after viewing and clicking the hypertext link (click rates) in the in-app messages and boosted Facebook post and the proportion of participants who completed the surveys per the number of completed consent and eligibility screeners (participation rates) were used to quantify the success of recruiting participants to the study website and study survey completion, respectively. Survey completion was defined as finishing the pregnancy and birth history section of the OM Global Health Study questionnaire. The recruitment period was from February 27, 2018, through January 24, 2020. In-app messages and the boosted Facebook post were seen by 104,000 and 21,400 people, respectively. Overall, 215 participants started the OM Global Health Study survey, of which 140 (65.1%), 39 (18.1%), and 36 (16.8%) participants were recruited via the app, the boosted Facebook post, and other passive recruitment methods, respectively. The click rate via the app was 18.9% (19,700 clicks/104,000 ad views) and 1.6% via the boosted Facebook post (340 clicks/21,400 ad views.) The overall participation rate was 44.6% (198/444), and the average participant age was 21.8 (SD 6.1) years. In terms of geographic and racial/ethnic diversity, 91 (44.2%) of the participants resided outside the United States and 147 (70.7%) identified as non-Hispanic White. In-app recruitment produced the most geographically diverse stream, with 44 (32.8%) of the 134 participants in Europe, 77 (57.5%) in North America, and 13 (9.8%) in other parts of the world. Both human error and nonhuman procedural breakdowns occurred during the recruitment process, including a computer programming error related to age eligibility and a hacking attempt by an internet bot. In-app messages using the menstrual tracking app Clue were the most successful method for recruiting participants from many geographic regions and producing the greatest numbers of started and completed surveys. This study demonstrates the utility of digital recruitment to enroll participants from diverse geographic locations and provides some lessons to avoid technical recruitment errors in future digital recruitment strategies for epidemiological research.
Approaches to Enhance Interpretability and Meaningful Use of Big Data in Population Health Practice and Research
While many public health and medical studies use big data, the potential for big data to further population health has yet to be fully realized. Because of the complexities associated with the storage, processing, analysis, and interpretation of these data, few research findings from big data have been translated into practice. Using small area estimation synthetic data and electronic health record (EHR) data, the overall goal of this dissertation research was to characterize health-related exposures with an explicit focus on meaningful data interpretability. In our first aim, we used regression models linked to population microdata to respond to high-priority needs articulated by our community partners in New Bedford, MA. We identified census tracts with an elevated percentage of high-risk subpopulations (e.g., lower rates of exercise, higher rates of diabetes), information our community partners used to prioritize funding opportunities and intervention programs. In our second and third aims, we scrutinized EHR data on children seen at Boston Medical Center (Boston, MA), New England’s largest safety-net hospital, from 2013 through 2017 and uncovered racial/ethnic disparities in asthma severity and residential mobility using logistic regression. We built upon a validated asthma computable phenotype to create a computable phenotype for asthma severity that is based in clinical asthma guidelines. We found that children for whom severity could be ascertained from these EHR data were less likely to be Hispanic and that Black children were less likely to have lung function testing data present. Lastly, we constructed contextualized residential mobility and immobility metrics using EHR address data and the Child Opportunity Index 2.0, identified opportunities and challenges EHR address data present to study this topic, and found significant racial/ethnic disparities in access to neighborhood opportunity. Our findings highlighted the perpetuation of residence in low opportunity areas among non-White children. The main challenge of this dissertation, to work within the limitations inherent to big data to extract meaningful knowledge from these data and by linking to external datasets, turned out to be an opportunity to engage in solutions-oriented research and do work that, to quote Aristotle, “…is greater than the sum of its parts”. Through strategies ranging from engaging with community partners to examining who and what data are captured (and not captured) in EHR health and address data, this dissertation demonstrated potential ways to leverage big data sources to further public health and health equity.