Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Pelgrift, J. Y."
Sort by:
In-Flight Calibration and Performance of the OSIRIS-REx Touch And Go Camera System (TAGCAMS)
The Touch And Go Camera System (TAGCAMS) is a three-camera-head instrument onboard NASA’s OSIRIS-REx asteroid sample return mission spacecraft. The purpose of TAGCAMS is to facilitate navigation to the target asteroid, (101955) Bennu; confirm acquisition of the asteroid sample; document asteroid sample stowage; and provide supplementary imaging for OSIRIS-REx science investigations. During the almost two-year OSIRIS-REx outbound cruise phase we pursued nine TAGCAMS imaging campaigns to check, calibrate and characterize the camera system’s performance before asteroid arrival and proximity operations began in late 2018. The TAGCAMS in-flight calibration dataset provides the relevant information to enable the three cameras to complete their primary observation goals during asteroid operations. The key performance parameters that we investigated in flight included: linearity, responsivity (both point source and extended body), dark current, hot pixels, pointing, image geometry transformation, image quality and stray light. Analyses of the in-flight performance either confirmed the continued applicability of the TAGCAMS ground test results or substantially improved upon the ground test knowledge. In addition, the TAGCAMS calibration observations identified the source of a spacecraft outgassing feature that guided successful remediation efforts prior to asteroid arrival.
Initial Orbit Determination and Event Reconstruction From Estimation of Particle Trajectories About (101955) Bennu
The OSIRIS‐REx mission has observed multiple instances of particles being ejected from the surface of near‐Earth asteroid (101955) Bennu. The ability to quickly identify the particle trajectories and origins is necessary following a particle ejection event. Using proven initial orbit determination techniques, we can rapidly estimate particle trajectories and ejection locations. We present current results pertaining to the identification of particle tracks, an evaluation of the estimated orbits and the excess velocity necessary to induce the particle ejection from the surface, and the uncertainty quantification of the ejection location. We estimate energies per particle ranging from 0.03 to 11.03 mJ for the largest analyzed events and velocities ranging from 5 to 90 cm/s, though we exclude the highest‐velocity particles in this technique. We estimate ejection times for eight events and constrain six of the analyzed ejection events to have occurred between about 16:30 and 19:00 local solar time, with the largest events occurring between 16:30 and 18:05. Key Points We present orbit determination techniques used to reconstruct particle ejections from near‐Earth asteroid Bennu We estimate energies per particle ranging from 0.03 to 11.03 mJ and velocities ranging from 5 to 90 cm/s for the largest analyzed events We find ejection times between about 16:30 and 19:00 local solar time for most events analyzed
Navigation and Orbit Estimation for New Horizons’ Arrokoth Flyby: Overview, Results and Lessons Learned
The New Horizons mission performed a successful flyby of Arrokoth, a distant Kuiper-Belt Object, on January 1, 2019, representing the farthest planetary encounter to date. The navigation strategy and performance required to deliver the spacecraft to the desired flyby target were driven by a number of challenges including those related to Arrokoth’s viewing angle and relatively recent discovery in June 2014. These and other challenges required the New Horizons science and navigation teams to devise a strategy in close collaboration that would substantially reduce the flyby navigation errors. Earth-based astrometry and occultation measurements of Arrokoth were collected and used to estimate Arrokoth’s orbit and its associated uncertainties, which were in turn used to inform and reduce navigation approach and flyby uncertainties. The New Horizons navigation effort used these a priori orbits along with radio metric and optical navigation measurements to first predict the navigation performance in support of the flyby design, and then estimate New Horizons ’ trajectory, maneuvers and other filter state parameters during navigation operations. An overview of the Arrokoth orbit estimation and navigation strategy and predicted performance, as well as the operational results from the initial target search campaign in 2004 through Arrokoth’s successful flyby in 2019 are presented, along with the principal challenges and most important lessons learned along the way.
Reconstruction of Bennu Particle Events From Sparse Data
OSIRIS‐REx began observing particle ejection events shortly after entering orbit around near‐Earth asteroid (101955) Bennu in January 2019. For some of these events, the only observations of the ejected particles come from the first two images taken immediately after the event by OSIRIS‐REx's NavCam 1 imager. Without three or more observations of each particle, traditional orbit determination is not possible. However, by assuming that the particles all ejected at the same time and location for a given event, and approximating that their velocities remained constant after ejection (a reasonable approximation for fast‐moving particles, i.e., with velocities on the order of 10 cm/s or greater, given Bennu's weak gravity), we show that it is possible to estimate the particles' states from only two observations each. We applied this newly developed technique to reconstruct the particle ejection events observed by the OSIRIS‐REx spacecraft during orbit about Bennu. Particles were estimated to have ejected with inertial velocities ranging from 7 cm/s to 3.3 m/s, leading to a variety of trajectory types. Most (>80%) of the analyzed events were estimated to have originated from midlatitude regions and to have occurred after noon (local solar time), between 12:44 and 18:52. Comparison with higher‐fidelity orbit determination solutions for the events with sufficient observations demonstrates the validity of our approach and also sheds light on its biases. Our technique offers the capacity to meaningfully constrain the properties of particle ejection events from limited data. Key Points We show how Bennu's particle ejection events can be reconstructed using only two observations For each event, we estimate the particle velocities and ejection location Velocities ranged from 7 cm/s to 3.3 m/s, and most observed events took place after noon
A contact binary satellite of the asteroid (152830) Dinkinesh
Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky–O’Keefe–Radzievskii–Paddack effect) 1 to be a notable factor in their evolution 2 . (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19  au ; its S-type spectrum 3 , 4 is typical of bodies in this part of the main belt 5 . Here we report observations by the Lucy spacecraft 6 , 7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event. Observations from the Lucy spacecraft of the small main-belt asteroid (152830) Dinkinesh reveals unexpected complexity, with a longitudinal trough and equatorial ridge, as well as the discovery of the first contact binary satellite.
Autonomous Detection of Particles and Tracks in Optical Images
When optical navigation images acquired by the OSIRIS‐REx (Origins, Spectral Interpretation, Resource Identification, and Security‐Regolith Explorer) mission revealed the periodic ejection of particles from asteroid (101955) Bennu, it became a mission priority to quickly identify and track these objects for both spacecraft safety and scientific purposes. The large number of particles and the mission criticality rendered time‐intensive manual inspection impractical. We present autonomous techniques for particle detection and tracking that were developed in response to the Bennu phenomenon but that have the capacity for general application to particles in motion about a celestial body. In an example OSIRIS‐REx data set, our autonomous techniques identified 93.6% of real particle tracks and nearly doubled the number of tracks detected versus manual inspection alone. Key Points We describe autonomous techniques for the identification and tracking of particles in motion about a celestial body We demonstrate these techniques using images from the OSIRIS‐REx mission to the active asteroid (101955) Bennu In the OSIRIS‐REx dataset, our autonomous algorithms detected 93.6% of real particle tracks, including 244 tracks not identified by manual inspection
Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis
Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu’s moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu’s surface particles span from the disruption of the asteroid’s parent body (boulders) to recent in situ production (micrometre-scale particles).Bennu’s surface presents evidence of a variety of particle sizes, from fine regolith to metre-sized boulders. Its moderate thermal inertia suggests that the boulders are very porous or blanketed by thin dust. Bennu’s boulders exhibit high albedo variations, indicating different origins and/or ages.
Concept of Operations for OSIRIS-REx Optical Navigation Image Planning
Optical navigation (OpNav) is a critical subsystem of the OSIRIS-REx asteroid sample return mission, which operated in the vicinity of near-Earth asteroid (101955) Bennu from August 2018 through April 2021. A substantial amount of mission resources across multiple subsystems and institutions is required to ensure that the OpNav data are successfully acquired. The KinetX OpNav team, part of the Flight Dynamics System (FDS), is responsible for performing required analysis to develop the OpNav operations plans; requesting, reviewing and verifying the plans; and ultimately using the image data for critical navigation operations. The FDS team, responsible for the mission navigation, is operated by KinetX Aerospace with management and operations support from NASA’s Goddard Space Flight Center. The Science Processing and Operations Center (SPOC), located at the University of Arizona’s Lunar and Planetary Laboratory, is responsible for generating the planning products for all science and most OpNav data. These plans are integrated into the spacecraft sequences, tested, and commanded by the Mission Support Area (MSA) at Lockheed Martin Space. To ensure mission-critical navigation image data are successfully acquired, the plan is developed through a waterfall of planning cycles over the course of 3 months prior to onboard plan execution. During the initial strategic planning for a mission phase, detailed analysis is performed by the OpNav team to conceptualize the concept of operations (ConOps) for image data collection. This phase OpNav Narrative is included along with other strategic planning documents for the key ground segment stakeholders to review and provide feedback. The detailed OpNav plans get defined in the tactical planning cycle, which spans 8 to 3 weeks before the week-long integrated sequence is executed on-board the spacecraft. During the tactical cycle, the initial OpNav Request is submitted along with the science requests, kicking off development of the science and OpNav plans. Once the initial plan is drafted, interfaces are exercised so that the plan can be reviewed and iterated, if necessary. A rigorous schedule is followed by the planning teams during the implementation cycle, spanning the last 18 days before uplink, to ensure all the necessary integration, testing, and reviewing can occur on time. The development of the OpNav planning ConOps, including responsibilities, interfaces, timelines, and procedures, took extensive collaboration across mission elements and institutions. The process was robust throughout the 137 weeks of continuous Optical Navigation Operations at Bennu, which concluded on April 9th, 2021.
Autonomous Detection of Particles and Tracks in Optical Images
During its initial orbital phase in early 2019, the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission detected small particles apparently emanating from the surface of the near-Earth asteroid (101955) Bennu in optical navigation images. Identification and characterization of the physical and dynamical properties of these objects became a mission priority in terms of both spacecraft safety and scientific investigation. Traditional techniques for particle identification and tracking typically rely on manual inspection and are often time-consuming. The large number of particles associated with the Bennu events and the mission criticality rendered manual inspection techniques infeasible for long-term operational support. In this work, we present techniques for autonomously detecting potential particles in monocular images and providing initial correspondences between observations in sequential images, as implemented for the OSIRIS-REx mission.