Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
629 result(s) for "Pellegrini, Matteo"
Sort by:
Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity
White adipose tissue (WAT) is an essential regulator of energy storage and systemic metabolic homeostasis. Regulatory networks consisting of immune and structural cells are necessary to maintain WAT metabolism, which can become impaired during obesity in mammals. Using single-cell transcriptomics and flow cytometry, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of healthy lean and obese human WAT. We report new subsets and developmental trajectories of adipose-resident innate lymphoid cells, dendritic cells and monocyte-derived macrophage populations that accumulate in obese WAT. Analysis of cell–cell ligand–receptor interactions and obesity-enriched signaling pathways revealed a switch from immunoregulatory mechanisms in lean WAT to inflammatory networks in obese WAT. These results provide a detailed and unbiased cellular landscape of homeostatic and inflammatory circuits in healthy human WAT. Immune cells exert important effects on white adipose tissue (WAT) in metabolic diseases. O’Sullivan and colleagues generate a comprehensive single-cell atlas of WAT cells in both health and disease to identify new cellular networks and differentiation trajectories.
Artificial intelligence as an enabler for entrepreneurs: a systematic literature review and an agenda for future research
PurposeWhile the disruptive potential of artificial intelligence (AI) has been receiving growing consensus with regards to its positive influence on entrepreneurship, there is a clear lack of systematization in academic literature pertaining to this correlation. The current research seeks to explore the impact of AI on entrepreneurship as an enabler for entrepreneurs, taking into account the crucial application of AI within all Industry 4.0 technological paradigms, such as smart factory, the Internet of things (IoT), augmented reality (AR) and blockchain.Design/methodology/approachA systematic literature review was used to analyze all relevant studies forging connections between AI and entrepreneurship. The cluster interpretation follows a structure that we called the “AI-enabled entrepreneurial process.”FindingsThis study proves that AI has profound implications when it comes to entrepreneurship and, in particular, positively impacts entrepreneurs in four ways: through opportunity, decision-making, performance, and education and research.Practical implicationsThe framework's practical value is linked to its applications for researchers, entrepreneurs and aspiring entrepreneurs (as well as those acting entrepreneurially within established organizations) who want to unleash the power of AI in an entrepreneurial setting.Originality/valueThis research offers a model through which to interpret the impact of AI on entrepreneurship, systematizing disconnected studies on the topic and arranging contributions into paradigms of entrepreneurial and managerial literature.
A mammalian methylation array for profiling methylation levels at conserved sequences
Infinium methylation arrays are not available for the vast majority of non-human mammals. Moreover, even if species-specific arrays were available, probe differences between them would confound cross-species comparisons. To address these challenges, we developed the mammalian methylation array, a single custom array that measures up to 36k CpGs per species that are well conserved across many mammalian species. We designed a set of probes that can tolerate specific cross-species mutations. We annotate the array in over 200 species and report CpG island status and chromatin states in select species. Calibration experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian methylation array has several strengths: it applies to all mammalian species even those that have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating the development of epigenetic biomarkers, and it increases the probability that biological insights gained in one species will translate to others. Methods to probe DNA methylation in the majority of non-human mammals are lacking. Here the authors developed a Mammalian Methylation Array that includes 36k well-conserved CpGs in mammals which will facilitate cross-species comparisons. They annotate the conserved CpGs in > 200 species. The array allows one to measure methylation in all mammalian species including unsequenced ones.
Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy
Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs. MAO-A-deficient mice exhibit decreased TAM immunosuppressive functions corresponding with enhanced antitumor immunity. MAOI treatment induces TAM reprogramming and suppresses tumor growth in preclinical mouse syngeneic and human xenograft tumor models. Combining MAOI and anti-PD-1 treatments results in synergistic tumor suppression. Clinical data correlation studies associate high intratumoral MAOA expression with poor patient survival in a broad range of cancers. We further demonstrate that MAO-A promotes TAM immunosuppressive polarization via upregulating oxidative stress. Together, these data identify MAO-A as a critical regulator of TAMs and support repurposing MAOIs for TAM reprogramming to improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an outer mitochondrial membrane-bound enzyme best known for its function in the brain, but also linked to cancer progression. Here, the authors show that MAO-A is expressed in tumor associated macrophages, promoting their immunosuppressive properties, and that MAO inhibition suppresses tumor growth in preclinical models.
Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice
Patients with chronic kidney disease (CKD) have elevated circulating levels of trimethylamine N-oxide (TMAO), a metabolite derived from gut microbes and associated with cardiovascular diseases. High circulating levels of TMAO and its dietary precursor, choline, predict increased risk for development of CKD in apparently healthy subjects, and studies in mice fed TMAO or choline suggest that TMAO can contribute to kidney impairment and renal fibrosis. Here we examined the interactions between TMAO, kidney disease, and cardiovascular disease in mouse models. We observed that while female hyperlipidemic apoE KO mice fed a 0.2% adenine diet for 14 weeks developed CKD with elevated plasma levels of TMAO, provision of a non-lethal inhibitor of gut microbial trimethylamine (TMA) production, iodomethylcholine (IMC), significantly reduced multiple markers of renal injury (plasma creatinine, cystatin C, FGF23, and TMAO), reduced histopathologic evidence of fibrosis, and markedly attenuated development of microalbuminuria. In addition, while the adenine-induced CKD model significantly increased heart weight, a surrogate marker for myocardial hypertrophy, this was largely prevented by IMC supplementation. Surprisingly, adenine feeding did not increase atherosclerosis and significantly decreased the expression of inflammatory genes in the aorta compared to the control groups, effects unrelated to TMAO levels. Our data demonstrate that inhibition of TMAO production attenuated CKD development and cardiac hypertrophy in mice, suggesting that TMAO reduction may be a novel strategy in treating CKD and its cardiovascular disease complications.
High-quality genome and methylomes illustrate features underlying evolutionary success of oaks
The genus Quercus , which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata , revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments. The genus Quercus (oaks) has diversified into over 450 species which often play dominant roles in the ecosystems in which they occur. Here the authors present a genome and methylome for a California endemic oak, Quercus lobata , and describe features relevant to its evolutionary success.
The relationship between knowledge management and leadership: mapping the field and providing future research avenues
Purpose Effectively handling knowledge is crucial for any organization to survive and prosper in the turbulent environments of the modern era. Leadership is a central element for knowledge creation, acquisition, utilization and integration processes. Based on these considerations, this study aims to offer an overview of the evolution of the literature regarding the knowledge management-leadership relationship published over the past 20 years. Design/methodology/approach A bibliometric analysis coupled with a systematic literature review were performed over a data set of 488 peer-reviewed articles published from 1990 to 2018. Findings The authors discovered the existence of four well-polarized clusters with the following thematic focusses: human and relational aspects, systematic and performance aspects, contextual and contingent aspects and cultural and learning aspects. The authors then investigated each thematic cluster by reviewing the most relevant contributions within them. Research limitations/implications Based on the bibliometric analysis and the systematic literature review, the authors developed an interpretative framework aimed at uncovering several promising and little explored research areas, thus suggesting an agenda for future knowledge management-leadership research. Some steps of the paper selection process may have been biased by the interpretation of the researcher. The authors addressed this concern by performing a multiple human subject reading process whose reliability was confirmed by a Krippendorf’s alpha coefficient value >0.80. Originality/value To the best knowledge, this is the first study to map, systematize and discuss the literature concerned to the topic of the knowledge management-leadership relationship.
Towards a unified open access dataset of molecular interactions
The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources. The IMEx consortium provides one of the largest resources of curated, experimentally verified molecular interaction data. Here, the authors review how IMEx evolved into a fundamental resource for life scientists and describe how IMEx data can support biomedical research.
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.
The cellular architecture of the antimicrobial response network in human leprosy granulomas
Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1β. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response. Modlin and colleagues examined the skin lesions of human leprosy patients using single-cell RNA sequencing coupled to cellular spatial mapping. Their analysis maps the architecture of granulomas in leprosy lesions from patients with leprosy with localized disease (tuberculoid leprosy, reversal reaction) to those with progressive infection (lepromatous leprosy).