Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
250 result(s) for "Pellegrino, Michele"
Sort by:
Top-down determinants of the numerosity–time interaction
Previous studies have reported that larger visual stimuli are perceived as lasting longer than smaller ones. However, this effect disappears when participants provide a qualitative judgment, by stating whether two stimuli have the “same or different” duration, instead of providing an explicit quantitative judgment (which stimulus lasts longer). Here, we extended these observations to the interaction between the numerosity of visual stimuli, i.e. clouds of dots, and their duration. With “longer vs shorter” responses, participants judged larger numerosities as lasting longer than smaller ones, both when the responses were related to the order (Experiment 1) or color (Experiment 4) of stimuli. In contrast, no similar effect was found with “same vs different” responses (Experiment 2) and in a time motor reproduction task (Experiment 3). The numerosity–time interference in Experiment 1 and Experiment 4 was not due to task difficulty, as sensory precision was equivalent to that of Experiment 2. We conclude that in humans the functional interaction between numerosity and time is not guided, in the main, by a shared bottom-up mechanism of magnitude coding. Rather, high-level and top-down processes involved in decision-making and guided by the use of “magnitude-related” response codes play a crucial role in triggering interference among different magnitude domains.
COVID-19 at a Glance: An Up-to-Date Overview on Variants, Drug Design and Therapies
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.
Chitosan Membranes Filled with Cyclosporine A as Possible Devices for Local Administration of Drugs in the Treatment of Breast Cancer
The aim of this work is the design, preparation and characterization of membranes based on cyclosporine A (CsA) and chitosan carboxylate (CC) to be used as an implantable subcutaneous medical device for a prolonged therapeutic effect in the treatment of breast cancer. The choice to use CsA is due to literature data that have demonstrated its possible antitumor activity on different types of neoplastic cells. To this end, CsA was bound to CC through an amidation reaction to obtain a prodrug to be dispersed in a chitosan-based polymeric membrane. The reaction intermediates and the final product were characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Membranes were analyzed by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The data obtained showed the effective formation of the amide bond between CsA and CC and the complete dispersion of CsA inside the polymeric membrane. Furthermore, preliminary tests, conducted on MDA-MB-231, a type of breast cancer cell line, have shown a high reduction in the proliferation of cancer cells. These results indicate the possibility of using the obtained membranes as an interesting strategy for the release of cyclosporin-A in breast cancer patients.
Impact of Cytochrome P450 Enzymes on the Phase I Metabolism of Drugs
The cytochrome P450 (CYP) enzyme family is the major enzyme system catalyzing the phase I metabolism of xenobiotics, including pharmaceuticals and toxic compounds in the environment. A major part of the CYP-dependent xenobiotic metabolism is due to polymorphic and inducible enzymes, which may, quantitatively or qualitatively, alter or enhance drug metabolism and toxicity. Drug–drug interactions are major mechanisms caused by the inhibition and/or induction of CYP enzymes. Particularly, CYP monooxygenases catalyze hydroxylation reactions to form hydroxylated metabolites. The secondary metabolites are sometimes as active as the parent compound, or even more active. The aim of this review is to summarize some of the significative examples of common drugs used for the treatment of diverse diseases and underline the activity and/or toxicity of their metabolites.
Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Triclosan: A Small Molecule with Controversial Roles
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells
Background Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. Methods Publicly available large-scale database and patient data sets derived from “The Cancer Genome Atlas” (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. Results We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. Conclusions The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.
Searching for New Gold(I)-Based Complexes as Anticancer and/or Antiviral Agents
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as silver, gold, palladium, rhodium, ruthenium, iridium, and osmium, have led to remarkable anticancer activities. Among the numerous chemical moieties studied, N-heterocyclic carbenes (NHCs) have revealed very attractive activities due to their favorable chemical properties. Specifically, gold–NHC complexes emerged as some of the most active complexes acting as antitumor agents. On the other hand, some recent studies have highlighted the involvement of these complexes in antiviral research as well. The well-known gold-based, orally available complex auranofin approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis has been suggested as a repositioned drug for both cancer and viral infections. In the era of the COVID-19 pandemic, the most interesting goal could be the discovery of gold–NHC complexes as dual antiviral and anticancer agents. In this review, the most recent studies regarding the anticancer and antiviral activities of gold(I)–NHC complexes will be analyzed and discussed, offering an interesting insight into the research in this field.
Application of Natural Edible Coating to Enhance the Shelf Life of Red Fruits and Their Bioactive Content
Red fruits contain bioactive substances including phenolic acids and flavonoids, which provide many health advantages for the human body. Industries find them intriguing because of their color and their ability to prevent chronic ailments such as metabolic, degenerative, and cardiovascular disorders. Nevertheless, the resilience of these organic molecules is influenced by several environmental, physical, and chemical phenomena. Therefore, the beneficial health properties of red fruits may diminish during postharvest processing. In this scenario, many postharvest methods have been implemented to enhance the shelf life and preserve the bioactive components of red fruits. The objectives of this review were to provide a comprehensive assessment of the health benefits of red fruits, and to explore the possibilities of edible coatings in retaining their freshness and protecting their bioactive contents. Co-occurrence networks were built using VOSviewer software to produce a two-dimensional map based on term frequency, and the examination of the 1364 keywords obtained from the scientific papers revealed the presence of at least 71 co-occurrences that provide insight into many natural components used in edible coatings for red fruits, such as proteins, polysaccharides, lipids, phospholipids, and minerals. The review examined their composition, functioning, application techniques, limits, safety considerations, legal regulations, and potential future developments. This review has shown that an edible coating may act as a protective layer on the surface of the fruit, alter the interior gas composition, reduce water loss, and postpone fruit ripening, thereby enhancing the health-promoting properties.
When Chirality Makes the Difference: The Case of Novel Enantiopure N-Heterocyclic Carbene–Gold and –Silver Complexes
N-heterocyclic carbene (NHC)–gold and –silver complexes have attracted the interest of the scientific community because of their multiple applications and their versatility in being chemically modified in order to improve their biological properties. However, most of these complexes contain one or more chiral centers, and have been obtained and studied as racemic mixture. In particular, concerning the interesting biological and medicinal properties, many questions about how the chirality may influence these properties still remain unanswered. Aiming at a better understanding, herein a series of enantiopure NHC–gold and –silver complexes was synthesized, characterized and biologically evaluated in different in vitro systems. The individuated complexes exerted different properties based on the complexed metal and the specific configuration, with the (R)-gold–NHC complexes being the most active, particularly as anti-inflammatory molecules. Docking simulations indicated a different binding mode for each enantiomer. Moreover, anticancer and antibacterial activities were also evaluated for the considered enantiomers. Overall, the reported data may contribute to a better understanding of the different biological properties exerted by the enantiopure gold and silver complexes.