Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Penco, Giuseppe"
Sort by:
Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses
The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths. Light pulses with controllable parameters are desired for studying the fundamental properties of matter. Here the authors generate and use phase-manipulated and highly time-stable XUV pulse pairs to probe the coherent evolution and dephasing of XUV electronic coherences in helium and argon.
Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses
Free-electron lasers producing ultrashort pulses with high peak power promise to extend ultrafast non-linear spectroscopic techniques into the extreme-ultraviolet–X-ray regime. Key aspects are the synchronization between pump and probe, and the control of the pulse properties (duration, intensity and coherence). Externally seeded free-electron lasers produce coherent pulses that can be synchronized with femtosecond accuracy. An important goal is to shorten the pulse duration, but the simple approach of shortening the seed is not sufficient because of the finite-gain bandwidth of the conversion process. An alternative is the amplification of a soliton in a multistage, superradiant cascade: here, we demonstrate the generation of few-femtosecond extreme-ultraviolet pulses, whose duration we measure by autocorrelation. We achieve pulses four times shorter, and with a higher peak power, than in the standard high-gain harmonic generation mode and we prove that the pulse duration matches the Fourier transform limit of the spectral intensity distribution.By amplifying a soliton in a multistage cascade, few-femtosecond extreme-ultraviolet free-electron laser pulses are achieved.
Accurate measurements of slice electron beam parameters at the undulator in seeded free-electron lasers
The operation of modern free-electron lasers (FELs) necessitates precise knowledge of electron beam properties at the undulator to ensure the level of control required by increasingly demanding experiments. In seeded FELs, where only electrons interacting with the seed laser contribute to the process, it is crucial to determine the local values of these properties. We present a novel method, based on accurate modeling of the FEL process in high-gain harmonic generation, to accurately retrieve the electron beam slice energy spread, current and laser-induced energy modulation. Understanding these values is essential for enabling advanced FEL schemes and optimally setting advanced seeding schemes such as echo-enabled harmonic generation. We describe the method and provide an experimental application to the FERMI FEL-1, where a slice energy spread in the range 40–100 keV with a few keV accuracy is measured.
New Method for Measuring Angle-Resolved Phases in Photoemission
Quantum mechanically, photoionization can be fully described by the complex photoionization amplitudes that describe the transition between the ground state and the continuum state. Knowledge of the value of the phase of these amplitudes has been a central interest in photoionization studies and newly developing attosecond science, since the phase can reveal important information about phenomena such as electron correlation. We present a new attosecond-precision interferometric method of angle-resolved measurement for the phase of the photoionization amplitudes, using two phase-locked extreme ultraviolet pulses of frequencyωand2ω, from a free-electron laser. Phase differencesΔη˜between one- and two-photon ionization channels, averaged over multiple wave packets, are extracted for neon2pelectrons as a function of the emission angle at photoelectron energies 7.9, 10.2, and 16.6 eV.Δη˜is nearly constant for emission parallel to the electric vector but increases at 10.2 eV for emission perpendicular to the electric vector. We model our observations with both perturbation and ab initio theory and find excellent agreement. In the existing method for attosecond measurement, reconstruction of attosecond beating by interference of two-photon transitions (RABBITT), a phase difference between two-photon pathways involving absorption and emission of an infrared photon is extracted. Our method can be used for extraction of a phase difference between single-photon and two-photon pathways and provides a new tool for attosecond science, which is complementary to RABBITT.
Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering
The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3 p resonances. Two-colour X-ray free electron laser is a powerful tool for pump–probe measurements, but currently constrained by limited tunability. Here, Ferrari et al . develop a configuration that allows tuning both the pump and the probe to specific electronic excitations, providing element selectivity.
Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser
Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. X-ray free-electron laser is a power probe for materials, but it is challenging to measure the spectro-temporal characters of individual pulses. Here, De Ninno et al. implement an interferometric method allowing one to characterize and control the ultrashort XUV pulses seeded by a femtosecond laser.
Nanoscale polarization transient gratings
Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control. Here, we present a method to create periodic, polarization modulations at the nanoscale using a tailored configuration of the FERMI free electron laser and demonstrate its capabilities by comparing the dynamics induced by this polarization transient grating with those driven by a conventional intensity grating on a thin ferrimagnetic alloy. While the intensity grating signal is dominated by the thermoelastic response, the polarization grating excitation minimizes it, uncovering helicity-dependent responses previously undetected. We anticipate nanoscale polarization transient gratings to become useful for the study of physical, chemical and biological systems possessing chiral symmetry. This study presents a method to create nanoscale polarization transient gratings in the EUV range. Unlike intensity gratings, it reduces thermal effects, revealing hidden material dynamics. This enables new insights in chiral materials and ultrafast magnetism.
Chirped pulse amplification in an extreme-ultraviolet free-electron laser
Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3–4.4 nm). Short laser pulses of femtosecond time scales are in high demand in order to explore the fast electron dynamics in light-matter interactions. Here, the authors demonstrated the compression of free electron laser pulses in the extreme ultraviolet range by using a chirped pulse amplification technique.
A detailed investigation of single-photon laser enabled Auger decay in neon
Single-photon laser enabled Auger decay (spLEAD) is an electronic de-excitation process which was recently predicted and observed in Ne. We have investigated it using bichromatic phase-locked free electron laser radiation and extensive angle-resolved photoelectron measurements, supported by a detailed theoretical model. We first used separately the fundamental wavelength resonant with the Ne+ 2s-2p transition, 46.17 nm, and its second harmonic, 23.08 nm, then their phase-locked bichromatic combination. In the latter case the phase difference between the two wavelengths was scanned, and interference effects were observed, confirming that the spLEAD process was occurring. The detailed theoretical model we developed qualitatively predicts all observations: branching ratios between the final Auger states, their amplitudes of oscillation as a function of phase, the phase lag between the oscillations of different final states, and partial cancellation of the oscillations under certain conditions.
Two-bunch operation with ns temporal separation at the FERMI FEL facility
In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.