Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Penfold, Linda M."
Sort by:
Genetic Restoration of the Florida Panther
The rediscovery of remnant Florida panthers (Puma concolor coryi) in southern Florida swamplands prompted a program to protect and stabilize the population. In 1995, conservation managers translocated eight female pumas (P. c. stanleyana) from Texas to increase depleted genetic diversity, improve population numbers, and reverse indications of inbreeding depression. We have assessed the demographic, population-genetic, and biomedical consequences of this restoration experiment and show that panther numbers increased threefold, genetic heterozygosity doubled, survival and fitness measures improved, and inbreeding correlates declined significantly. Although these results are encouraging, continued habitat loss, persistent inbreeding, infectious agents, and possible habitat saturation pose new dilemmas. This intensive management program illustrates the challenges of maintaining populations of large predators worldwide.
Artificial insemination and parthenogenesis in the whitespotted bamboo shark Chiloscyllium plagiosum
Non-lethal methods for semen collection from elasmobranchs to better understand species reproduction has accompanied the development of artificial insemination. Ejaculates (n = 82) collected from whitespotted bamboo sharks Chiloscyllium plagiosum (n = 19) were assessed and cold-stored raw or extended at 4 °C. Females (n = 20) were inseminated with fresh or 24–48 h cold-stored raw or extended semen and paternity of offspring determined with microsatellite markers. Insemination of females with fresh semen (n = 10) resulted in 80 hatchlings and 27.6% fertility. Insemination of females with semen cold-stored 24 h (n = 4) and 48 h (n = 1) semen resulted in 17 hatchlings and fertilization rates of 28.1% and 7.1% respectively. Two females inseminated with fresh or cold-stored semen laid eggs that hatched from fertilization and parthenogenesis within the same clutch. Parthenogenesis rate for inseminated females was 0.71%. Results demonstrate artificial insemination with cold-stored semen can provide a strategy for transport of male genetics nationally and internationally, precluding the need to transport sharks. Production of parthenotes in the same clutch as sexually fertilized eggs highlights the prevalence of parthenogenesis in whitespotted bamboo sharks and poses important considerations for population management.
Initial Characterization of Male Southern Stingray (Hypanus americanus) Reproductive Parameters and Preliminary Investigation of Sperm Cryopreservation
This study investigated the reproductive biology and sperm cryopreservation of ex situ southern stingrays (Hypanus americanus) by semen collection and characterization and the development and validation of an enzyme-linked immunoassay for plasma total testosterone. Semen was collected in March and June using a manual massage technique, and the ejaculates were assessed for volume, pH, osmolarity, motility, status (0–5 scale: 0 = no forward progression, 5 = rapid linear progression) and total sperm count. Semen was extended in Hank’s elasmobranch ringer solution containing 10% DMSO, 10% glycerol or 5% glycerol with 5% N-methylformamide and cryopreserved using a conventional freezing method (~−50 °C/min) or a modified slow freezing method (~−3 °C/min). Body condition was scored from 1–5 and was noted to be low in March (1.93 ± 0.07) due to feeding practices and increased by June (2.93 ± 0.05) after dietary corrections were made. A concomitant increase (p < 0.05) in plasma total testosterone concentration and sperm motility was noted between March (8.0 ± 7.2 ng/mL, 5.71 ± 2.77%) and June (97.3 ± 11.3 ng/mL, 51.4 ± 14.3%). Samples cryopreserved using a modified slow freeze method (~−3 °C/min) had higher post-thaw motility and plasma membrane integrity than conventionally cryopreserved samples. Data indicate that southern stingray sperm morphometrics adheres to those of other elasmobranch species and that a slow cooling rate may be an avenue of research to improve southern stingray sperm survival during cryopreservation.
Testosterone and semen seasonality for the sand tiger shark Carcharias taurus
Understanding the fundamental reproductive biology of a species is the first step toward identifying parameters that are critical for reproduction and for the development of assisted reproductive techniques. Ejaculates were collected from aquarium (n = 24) and in situ (n = 34) sand tiger sharks Carcharias taurus. Volume, pH, osmolarity, sperm concentration, motility, status, morphology, and plasma membrane integrity were assessed for each ejaculate. Semen with the highest proportion of motile sperm was collected between April and June for both in situ and aquarium sand tiger sharks indicating a seasonal reproductive cycle. Overall, 17 of 30 semen samples collected from aquarium sharks from April through June contained motile sperm compared to 29 of 29 of in situ sharks, demonstrating semen quality differences between aquarium and in situ sharks. Sperm motility, status, morphology, and plasma membrane integrity were significantly higher (P < 0.05) for in situ compared to aquarium sand tiger sharks. Testosterone was measured by an enzyme immunoassay validated for the species. Testosterone concentration was seasonal for both aquarium and in situ sharks with highest concentrations measured in spring and lowest in summer. In situ sharks had higher (P < 0.05) testosterone concentration in spring than aquarium sharks. This study demonstrated annual reproduction with spring seasonality for male sand tiger sharks through marked seasonal differences in testosterone and semen production. Lower testosterone and poorer semen quality was observed in aquarium sharks likely contributing to the species' limited reproductive success in aquariums. Summary sentence During mating season, in situ sand tiger sharks Carcharias taurus have higher plasma testosterone and better semen quality than aquarium housed sand tiger sharks impairing reproductive success of aquarium populations.
Development of an 11-oxoetiocholanolone mini-kit for the quantification of faecal glucocorticoid metabolites in various wildlife species
As part of its mission to advance the field of wildlife endocrinology, the International Society of Wildlife Endocrinology aims to develop cost-effective antibodies and enzyme immunoassay kits that support research across a diverse range of species and sample matrices. To provide additional options for the quantification of faecal glucocorticoid metabolites (fGCMs), an antibody against 11-oxoetiocholanolone-17-carboxymethyl oxime (CMO) was generated in rabbits, and an enzyme immunoassay incorporating a horseradish peroxidase-conjugated label and 11-oxoetiocholanolone standard has been developed, designed for use with anti-rabbit IgG secondary antibody coated plates. This mini-kit was used to quantify glucocorticoid metabolites with a 5β-3α-ol-11-one structure in faecal extracts from 23 species: African and Asian elephants, Alpine chamois, American bison, Bengal tiger, blue wildebeest, blue-and-yellow macaw, brushtail possum, cape buffalo, fat-tailed dunnart, Florida manatee, ghost bat, giraffe, golden langur, Gould’s wattled bat, hippopotamus, Leadbeater’s possum, mandrill, okapi, roan antelope, samango monkey, short-beaked echidna, and western lowland gorilla. Pharmacological (adrenocorticotropic hormone challenge) and biological (inter-zoo translocation, wild capture, social disruption, illness/injury and veterinary intervention) challenges resulted in expected increases in fGCM concentrations, and in a subset of species, closely paralleled results from a previously established immunoassay against 11-oxoetiocholanolone-17-CMO. Two additional species tested, Krefft’s glider, which showed contradictory results on this assay compared to a previously validated enzyme immunoassay (EIA) and Ankole cow, where the magnitude increase post-event did not quite reach the 2-fold change criteria, highlight that differences in excreted faecal metabolites across species mean that no EIA will be suitable for all species. This assay provides a valuable new option for assessing adrenal activity across taxa using a group-specific antibody. Future studies should put similar emphasis on validation to determine optimal assay choice for measuring fGCMs in a variety of species.
Reproductive Cycle and Periodicity of In Situ and Aquarium Female Sand Tiger Sharks Carcharias taurus from the Western North Atlantic
Fundamental characteristics of the reproductive biology of female sand tiger sharks Carcharias taurus are needed to understand the periodicity, seasonality and environmental factors essential for reproduction in this iconic species. Animals in managed care, such as aquariums, provide the unique opportunity for longitudinal study in contrast to in situ sharks that are examined opportunistically, and at a single point in time. Additionally, comparison of reproductive observations from successfully reproducing in situ sharks and aquarium sharks may help elucidate reasons for lack of reproduction among aquarium sharks and aid the development of assisted reproductive techniques for managed populations. Reproductive status of in situ and aquarium female sharks was assessed using ultrasonography and plasma hormone (17 β -estradiol, testosterone, and progesterone) monitoring. The reproductive cycle was divided into eight stages based on ovarian activity and uterine contents. In situ sharks were sampled from Delaware Bay ( n = 29), North Carolina ( n = 39) and South Carolina ( n = 11) during April-November from 2015–2020. Nineteen aquarium females from five aquaria were examined longitudinally for two or more consecutive years. Reproductive regionalization was observed among in situ females with the majority (83%) of North Carolina females in an active state of reproduction and all Delaware females in a resting reproductive state. All aquarium females had a pattern of reproductive cycling that was consistent with alternating years of activity and rest with confirmed biennial ( n = 7) or triennial ( n = 3) reproductive cycles with spring seasonality. In contrast to in situ females, aquarium females often retained uterine eggs for 9-20 months after ovulation in the absence of a developing embryo(s). Pre-ovulatory aquarium females had significantly higher concentrations of 17 β -estradiol, testosterone and progesterone than other reproductive stages. For females in the ovulatory stage, in situ females had higher testosterone than aquarium females. Endocrine differences between successfully reproducing in situ females and aquarium females likely contribute to the limited reproductive success observed for this species in managed care and may be a reflection of diminished seasonal cues and environmental differences.
Microsatellite loci for the okapi (Okapia johnstoni)
We describe 13 polymorphic microsatellite loci for the okapi ( Okapia johnstoni ). These markers were tested with 20 samples collected from a number of populations and exhibited a mean of 6.1 alleles per locus and a mean expected heterozygosity of 0.759. All but one locus was in Hardy–Weinberg equilibrium, and no evidence for linkage disequilibrium was detected between any loci. These loci will be useful for the future study of population genetic diversity and genetic structure in this elusive and emblematic species.
Idiopathic Infertility in Two Captive Male Gerenuk (Litocranius walleri walleri)
Two adult male gerenuk (Litocranius walleri walleri) were confirmed infertile with distinctly varying clinical presentations. One animal had unilateral testicular degeneration/hypoplasia, and within 8 mo experienced atrophy/degeneration of the remaining testicle. The second animal had been previously treated with melengesterol acetate (MGA) milled in feed for 1 yr during puberty as part of an aggression-control study. The testes in this individual appeared normal both visually and on palpation; however, repeated semen collection consistently produced ejaculates containing high numbers of immotile spermatozoa, all of a single abnormal morphology: shortened tails, with normal total sperm counts for this species. Both gerenuk had cortisol concentrations within normal ranges for adult male gerenuk. Analysis of serum mineral concentration revealed zinc levels that would be considered low in domestic cattle. Testosterone levels were low for the animal discussed in case 1, but were within normal range for the animal in case 2 compared with other gerenuk. Investigations into endocrine causes, such as abnormal thyroid hormone concentrations and adrenal function, were unrewarding. Both animals discussed in this report are maternally related; therefore, a genetic cause of infertility cannot be ruled out. Further investigation into MGA, as well as the dietary zinc requirements for gerenuk, and resulting effects on spermatogenesis and testicular development are warranted.