Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
156
result(s) for
"Peng, Chun-Wei"
Sort by:
Efficacy of Warfarin Therapy Guided by Pharmacogenetics: A Real-world Investigation Among Han Taiwanese
2023
The anticoagulation activity of warfarin in populations with CYP2C9, VKORC1, and CYP4F2 variants differs between individuals and is correlated with poor international normalized ratio (INR) control. Pharmacogenetics-guided warfarin dosing has been successfully developed for patients with genetic variations in recent years. However, few real-world data have been used to investigate the INR and warfarin dosage and the time to target INR. This study examined the largest collection of genetic and clinical real-world data related to warfarin to provide further evidence supporting the benefits of pharmacogenetics in clinical outcomes.
We retrieved a total of 69,610 INR-warfarin records after the index date from 2,613 patients in the China Medical University Hospital database between January 2003 and December 2019. Each INR reading was obtained from the latest laboratory data after the hospital visit date. Patients with a history of malignant neoplasms or pregnancy before the index date were excluded, as were patients without data on INR measurements after the fifth day of prescription, genetic information, or gender variables. The primary outcomes were the INR and warfarin dosage during days 7, 14, 28, 56, and 84 after prescription. The secondary outcome was the time required to reach the INR ranges of 1.5 to 3.0 and >4.0.
A total of 59,643 INR-warfarin records from 2188 patients were retrieved. The average INR was higher for homozygous carriers of the minor allele at CYP2C9 and VKORC1 during the first 7 days (1.83 [1.03] [CYP2C9*1] and 2.46 [1.44] [CYP2C9*3], P < 0.001; 1.39 [0.36] [rs9923231 G/G], 1.55 [0.79] [rs9923231 G/A], and 1.96 [1.13] [rs9923231 A/A], P < 0.001) than for the wild-type allele. These patients with variants required lower warfarin doses than those with the wild-type allele during the first 28 days. CYP4F2 variant patients seemed to require higher doses of warfarin than those in the wild-type group; however, no significant difference in the average INR was observed (1.95 [1.14] [homozygous V433 carriers], 1.78 [0.98] [heterozygous V433M carriers], and 1.66 [0.91] [homozygous M433 carriers], P = 0.016).
Our study indicates that genetic variants in the Han population may enhance warfarin responsiveness, which holds clinical relevance. An increased warfarin dosage was not linked to a shorter time to therapeutic INR between CYP4F2 variant patients and those with a wild-type allele. Assessing CYP2C9 and VKORC1 genetic polymorphisms before initiating warfarin treatment in real-world practice is essential for potentially vulnerable patients and is likely to optimize therapeutic dosing.
Journal Article
Levels of Phthalates, Bisphenol-A, Nonylphenol, and Microplastics in Fish in the Estuaries of Northern Taiwan and the Impact on Human Health
by
Chao, How-Ran
,
Hsu, Yi-Chyun
,
Mansor, Wan-Nurdiyana-Wan
in
Bioaccumulation
,
Bisphenol A
,
Chemicals
2021
Due to the sparsity in knowledge, we investigated the presence of various estrogenic endocrine-disrupting chemicals (EEDCs), including phthalates (PAEs), bisphenol-A (BPA), and nonylphenol (NP), as well as microplastics (MPs) in samples of the most widely consumed fish collected from different estuaries in northern Taiwan. We then proceeded to determine the likely contribution that this exposure has on the potential for health impacts in humans following consumption of the fish. Six hundred fish caught from five river estuaries (producing 130 pooled samples) were analyzed to determine how different factors (such as the river, benthic, pelagic, and migratory species) influence EEDCs’ contamination and the possible impacts on human health following typical consumption patterns. The predominant EEDCs was diethyl phthalates (DEP), bis (2-ethylhexyl) phthalates (DEHP), and di-iso-nonylphthalate (DINP) in fish, present at 52.9 ± 77.3, 45.3 ± 79.8, and 42.5 ± 79.3 ng/g dry weight (d.w.), respectively. Residual levels of NP, BPA, and MPs in the fish were 17.4 ± 29.1 and 1.50 ± 2.20 ng/g d.w. and 0.185 ± 0.338 mg/g d.w., respectively. EEDCs and MPs levels varied widely among the five river estuaries sampled due, in part, to differences in habitat types and the associated diversity of fish species sampled. For DEP, the Lao-Jie River and pelagic environments produced the most severely contaminated fish species, respectively. DEP residues were also associated with the burden of MPs in the fish. Based on our analysis, we predict no substantial direct human health risk by EEDCs based on typical consumption rates of estuarine fish by the Taiwanese people. However, other sources of EEDC exposure cannot be ignored.
Journal Article
Efficacy and Safety Evaluation of a Chlorine Dioxide Solution
by
Wang, Shan-Shue
,
Cheng, Ming-Long
,
Way, Tzong-Der
in
Animals
,
Antimicrobial agents
,
Bacteria - drug effects
2017
In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.
Journal Article
Quantum dots for cancer research: current status, remaining issues, and future perspectives
2012
Cancer is a major threat to public health in the 21st century because it is one of the leading causes of death worldwide. The mechanisms of carcinogenesis, cancer invasion, and metastasis remain unclear. Thus, the development of a novel approach for cancer detection is urgent, and real-time monitoring is crucial in revealing its underlying biological mechanisms. With the optical and chemical advantages of quantum dots (QDs), QD-based nanotechnology is helpful in constructing a biomedical imaging platform for cancer behavior study. This review mainly focuses on the application of QD-based nanotechnology in cancer cell imaging and tumor microenvironment studies both in vivo and in vitro, as well as the remaining issues and future perspectives.
Journal Article
miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2
2019
Background
miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy.
Methods
The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p.
Results
miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways.
Conclusion
miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.
Journal Article
Application of Quantum Dots-Based Biotechnology in Cancer Diagnosis: Current Status and Future Perspectives
2010
The semiconductor nanocrystal quantum dots (QDs) have excellent photo-physical properties, and the QDs-based probes have achieved encouraging developments in cellular and in vivo molecular imaging. More and more researches showed that QDs-based technology may become a promising approach in cancer research. In this review, we focus on recent application of QDs in cancer diagnosis and treatment, including early detection of primary tumor such as ovarian cancer, breast cancer, prostate cancer and pancreatic cancer, as well as regional lymph nodes and distant metastases. With the development of QDs synthesis and modification, the effect of QDs on tumor metastasis investigation will become more and more important in the future.
Journal Article
Quantum dot-based multiplexed imaging in malignant ascites: a new model for malignant ascites classification
2015
The aims of this study are to establish a new method for simultaneously detecting the interactions between cancer cells and immunocytes in malignant ascites (MA) and to propose a new model for MA classification.
A quantum dot (QD)-based multiplexed imaging technique was developed for simultaneous in situ imaging of cancer cells, lymphocytes, and macrophages. This method was first validated in gastric cancer tissues, and then was applied to MA samples from 20 patients with peritoneal carcinomatosis from gastrointestinal and gynecological origins. The staining features of MA and the interactions between cancer cells and immunocytes in the ascites were further analyzed and correlated with clinical features.
The QD-based multiplexed imaging technique was able to simultaneously show gastric cancer cells, infiltrating macrophages, and lymphocytes in tumor tissue, and the technique revealed the distinctive features of the cancer tumor microenvironment. When this multiplexed imaging protocol was applied to MA cytology, different features of the interactions and quantitative relations between cancer cells and immunocytes were observed. On the basis of these features, MA could be classified into immunocyte-dominant type, immunocyte-reactive type, cancer cell-dominant type, and cell deletion type; the four categories were statistically different in terms of the ratio of cancer cells to immunocytes (P<0.001). Moreover, in the MA, the ratio of cancer cells to immunocytes was higher for patients with gynecological and gastric cancers than for those with colorectal cancer.
The newly developed QD-based multiplexed imaging technique was able to better reveal the interactions between cancer cells and immunocytes. This advancement allows for better MA classification and, thereby, allows for treatment decisions to be more individualized.
Journal Article
Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives
by
Wang, Lin-Wei
,
Chen, Chuang
,
Peng, Chun-Wei
in
Animals
,
Biomarkers
,
Biomarkers, Tumor - genetics
2015
As the most common malignant tumor for females, breast cancer (BC) is a highly heterogeneous disease regarding biological behaviors. Precisely targeted imaging on BC masses and biomarkers is critical to BC detection, treatment, monitoring, and prognostic evaluation. As an important imaging technique, quantum dots (QDs)-based imaging has emerged as a promising tool in BC researches owe to its outstanding optical properties. However, few reviews have been specifically devoted to discussing applications of QDs-based imaging in BC researches. This review summarized recent promising works in QDs-based tissue and in vivo imaging for BC studies. Physicochemical and optical properties of QDs and its potential applications were briefly described first. Then QDs-based imaging studies in BC were systematically reviewed, including tissue imaging for studying biomarkers interactions, and evaluating prognostic biomarkers, in vivo imaging for mapping axillary lymphatic system, showing BC xenograft tumor, and detecting BC metastases. At last, the future perspectives with special emphasis on the potential clinical applications have also been discussed. Potential applications of QDs-based imaging on clinical BC in the future are mainly focused on tissue study, especially in BC molecular pathology due to its optimal optical properties and quantitative information capabilities on multiple biomarkers.
Journal Article
Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance
by
Liu, Xiong
,
Liu, Xiu-Li
,
Peng, Chun-Wei
in
Angiogenesis
,
Behavior
,
Biomedical and Life Sciences
2010
Background
Cancer invasion results from constant interactions between cancer cells and their microenvironment. Major components of the cancer microenvironment are stromal cells, infiltrating inflammatory cells, collagens, matrix metalloproteinases (MMP) and newly formed blood vessels. This study was to determine the roles of MMP-9, MMP-2, type IV collagen, infiltrating macrophages and tumor microvessels in gastric cancer (GC) invasion and their clinico-pathological significance.
Methods
Paraffin-embedded tissue sections from 37 GC patients were studied by Streptavidin-Peroxidase (SP) immunohistochemical technique to determine the levels of MMP-2, MMP-9, type IV collagen, macrophages infiltration and microvessel density (MVD). Different invasion patterns were delineated and their correlation with major clinico-pathological information was explored.
Results
MMP2 expression was higher in malignant gland compared to normal gland, especially nearby the basement membrane (BM). High densities of macrophages at the interface of cancer nests and stroma were found where BM integrity was destroyed. MMP2 expression was significantly increased in cases with recurrence and distant metastasis (
P =
0.047 and 0.048, respectively). Infiltrating macrophages were correlated with serosa invasion (
P
= 0.011) and TNM stage (
P
= 0.001). MVD was higher in type IV collagen negative group compared to type IV collagen positive group (
P
= 0.026). MVD was related to infiltrating macrophages density (
P
= 0.040). Patients with negative MMP9 expression had better overall survival (OS) compared to those with positive MMP9 expression (Median OS 44.0 vs 13.5 mo,
P
= 0.036). Median OS was significantly longer in type IV collagen positive group than negative group (Median OS 25.5 vs 10.0 mo,
P
= 0.044). The cumulative OS rate was higher in low macrophages density group than in high macrophages density group (median OS 40.5 vs 13.0 mo,
P
= 0.056). Median OS was significantly longer in low MVD group than high MVD group (median OS 39.0 vs 8.5 mo,
P
= 0.001). The difference of disease-free survival (DFS) between low MVD group and high MVD group was not statistically significant (
P
= 0.260). Four typical patterns of cancer invasion were identified based on histological study of the cancer tissue, including Washing pattern, Ameba-like pattern, Spindle pattern and Linear pattern.
Conclusions
Proteolytic enzymes MMP9, MMP2 and macrophages in stroma contribute to GC progression by facilitating the angiogenesis. Cancer invasion patterns may help predict GC metastasis.
Journal Article
Combined features based on MT1-MMP expression, CD11b + immunocytes density and LNR predict clinical outcomes of gastric cancer
2013
Background
Given the complexity of tumor microenvironment, no single marker from cancer cells could adequately predict the clinical outcomes of gastric cancer (GC). The objective of this study was to evaluate the prognostic role of combined features including conventional pathology, proteinase and immune data in GC.
Methods
In addition to pathological studies, immunohistochemistry was used to assess membrane-type 1 matrix metalloproteinase (MT1-MMP) expression and CD11b + immunocytes density in three independent GC tissue microarrays containing 184 GC tissues. Separate and combined features were evaluated for their impact on overall survival (OS).
Results
We found that traditional factors including tumor size, histological grade, lymph node status, serosa invasion and TNM stage were associated with OS (
P
< 0.05 for all). Moreover, statistically significant differences in OS were found among lymph node ratio (LNR) subgroups (
P
< 0.001), MT1-MMP subgroups (
P
= 0.015), and CD11b + immunocytes density subgroups (
P
= 0.031). Most importantly, combined feature (MT1-MMP positive, low CD11b + immunocytes density and high LNR) was found by multivariate analysis to be an independent prognostic factors for OS after excluding other confounding factors (HR = 3.818 [95%CI: 2.223-6.557],
P
< 0.001). In addition, this combined feature had better performance in predicting clinical outcomes after surgery long before recurrence had occurred (Area under the curve: 0.689 [95%CI: 0.609-0.768],
P
< 0.001).
Conclusions
These findings indicate that better information on GC prognosis could be obtained from combined clinico-pathological factors, tumor cells and the tumor microenvironment.
Journal Article