Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
216
result(s) for
"Peng, Jianyu"
Sort by:
Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure
by
An, Bingwen
,
Wang, Yiyao
,
Li, Ziqi
in
Acoustic frequencies
,
Acoustic properties
,
Acoustic waves
2025
Vector hydrophones play an extremely important role in marine exploration. How to reduce the size of vector hydrophones while improving their directional detection capability is a critical issue that needs to be addressed. The auditory organ of the fly Ormia ochracea represents a prime example of achieving high-resolution directional detection within a compact size range. This paper proposes a vector hydrophone that integrates an Ormia ochracea fly-inspired mechanically coupled structure with an optical fiber vibration sensing structure, offering advantages of small size and strong electromagnetic interference immunity. The hydrophone demonstrates a good response to acoustic pulse trains and can accurately demodulate acoustic waves from 1 kHz to 10 kHz. Directional response experiments show that this hydrophone can significantly amplify the time delay differences of incoming acoustic waves. At an acoustic frequency of 9.25 kHz, the time delay amplification factor reaches approximately 50 times within the range of −90° to +90°, exhibiting good cosine directionality.
Journal Article
Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge
by
Zhang, Fengpeng
,
Wang, Haonan
,
Li, Jiaqiang
in
Compressive properties
,
Crack propagation
,
Cracking (fracturing)
2023
This research aims to explore the fracturing behaviors of sandstone subjected to pulsed high-voltage discharge (PHVD) under different static pressures. An experimental method of rock fracturing induced by inter-hole PHVD was proposed. The static pressure was applied to the specimens, then the proposed method was applied to induce electrical breakdown testing under static loading. The microscopic fracture morphology of the sandstone was observed. The influences of the direction and level of static pressure on the crack length and fractal dimension of sandstone under the effect of PHVD were discussed. The results indicated that in the absence of static pressure, there are a discharge channel and multiple radial cracks in the sandstone after electric breakdown. The microscopic analysis implies that rock failure in the zone around the discharge channel is mainly influenced by the high temperature; while radial cracks are induced by shock waves. When static pressure is vertical to the discharge channel, tensile and compressive stresses concentrate in different parts around the discharge channel, which can remarkably alter the distribution zone and propagation path of cracks. In addition, the fractal dimension and total length of cracks first decrease, then increase with increasing static pressure. When static pressure is parallel to the discharge channel, the distribution characteristics and propagation direction of cracks are unchanged; however, under this loading mode, circularly distributed hoop tensile strains are generated at the zone around the discharge channel, which enables the fractal dimension and crack length increase with increasing static pressure.
Journal Article
Effects of the spacing between plasma channels on the fracture behavior of red sandstone under high-voltage pulse discharge
by
Zhou, Yuanhang
,
Zhang, Fengpeng
,
Yan, Guangliang
in
Energy
,
Engineering
,
Environmental Science and Engineering
2024
In rock engineering, high-voltage pulse technology has attracted attention because it offers environmental protection, controllable energy, and repeatable discharge. It is necessary to study the fracture behavior of rock under high-voltage pulse discharge (HVPD) for the parametric design of rock breaking thereby. HVPD experiments were conducted in red sandstone samples with the plasma channel spacing ranging from 26 to 66 mm at intervals of 10 mm. The stress wave generated by HVPD was obtained from the current waveform measured by Rogowski coils. In combination with numerical simulations, the distribution characteristics, propagation process, and formation mechanism of fractures were analyzed. The results showed that after two applications of HVPD at different positions, the sample was both broken down and two plasma channels and radial fractures centered around them were formed within. The stress wave decays exponentially with the increase of the distance from the plasma channel. When the spacing between plasma channels is less than or equal to 46 mm, fracture coalescence occurs between the two plasma channels; thereafter, the fractures formed by the second HVPD face resistance to propagation towards the fracture area formed by the first HVPD. In addition, numerical simulation results indicate that the second HVPD will generate significant tensile stress in the middle region of the two plasma channels, leading to near-horizontal fracture coalescence. When the spacing between plasma channels increases to 56 mm and 66 mm, the tensile stress induced by the second HVPD in the middle region of the sample is small, and it is difficult to form fracture coalescence between the two channels.
Article Highlights
HVPD experiments with different plasma channel spacings were conducted on sandstone.
The stress wave generated by HVPD in sandstone was obtained.
The propagation process of fractures in sandstone induced by HVPD was analyzed.
Journal Article
The Inversion Method Applied to the Stress Field around a Deeply Buried Tunnel Based on Surface Strain
2023
To identify the magnitude and direction of in situ stress in deeply buried tunnels, an inversion method for the stress field was proposed based on a finite number of measurement points of surface strain. Firstly, elastic strain data of finite points on the surface of tunnel surrounding rock were acquired using the borehole stress relief method at the engineering site. Secondly, a finite element model of the tunnel surrounding rock with plastic damage was established, and the parameters of the finite element model were substituted using the SIGINI subroutine. Then, an improved Surrogate Model Accelerated Random Search (SMARS) was developed using genetic algorithm programming on the MATLAB™ platform to invert and attain the globally optimal boundary conditions. Finally, the obtained optimal boundary conditions were applied to the numerical model to calculate the stress distribution in the engineering site. The reliability of this method was validated through a three-dimensional example. The method has been successfully applied to the stress-field analysis of deep tunnels in Macheng Iron Mine, Hebei Province, China. The research results show that this method is a low-cost, reliable approach for stress-field inversion in the rock around a tunnel.
Journal Article
Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway
2016
Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL-12) family structural subunit and can form a heterodimer with IL-27p28 and IL-12p35 subunit to build IL-27 and IL-35, respectively. However, IL-27 stimulates whereas IL-35 inhibits antitumor T cell responses. To date, little is known about the role of EBI3 in tumor microenvironment. In this study, firstly we assessed EBI3, IL-27p28, IL-12p35, gp130, and p-STAT3 expression with clinicopathological parameters of colorectal cancer (CRC) tissues; then we evaluated the antitumor T cell responses and tumor growth with a EBI3 blocking peptide. We found that elevated EBI3 may be associated with IL-12p35, gp130, and p-STAT3 to promote CRC progression. EBI3 blocking peptide promoted antitumor cytotoxic T lymphocyte (CTL) response by inducing Granzyme B, IFN-γ production, and p-STAT3 expression and inhibited CRC cell proliferation and tumor growth to associate with suppressing gp130 and p-STAT3 expression. Taken together, these results suggest that EBI3 may mediate a bidirectional reciprocal-regulation STAT3 signaling pathway to assist the tumor escape immune surveillance in CRC.
Journal Article
Experimental Study and Mechanism Analysis on the Effects of Biaxial In-Situ Stress on Hard Rock Blasting
2023
Drill and blast method is widely applied in deep rock engineering, and the in-situ stress poses a great challenge to blasting excavation. The failure mechanism of rock under coupled dynamic and static loads and the effect of in-situ stress on blasting effects are major concerns when dealing with deep rock blasting excavation. In this study, lab-scale crater blasting experiments on sandstone specimens under various equal biaxial compressive stresses were conducted to investigate the effects of in-situ stress on blasting effects and the mechanism of in-situ stress affecting rock blasting. The initiation and propagation of crack network, morphological characteristics of blasting crater, and distribution characteristics of blasting fragments under biaxial in-situ stress were studied. Besides, the quantitative relationships between biaxial in-situ stress and blasting crater parameters (diameter, area, and volume) were analyzed. The experimental results show that the biaxial static stress inhibits the formation of radial cracks and promotes the formation of circumferential cracks, resulting in the time delay of initial crack formation and the change of initial crack type from radial crack to circumferential crack. With increasing biaxial static stress, the diameter, area and volume of blasting crater, and the size and quantity of blasting fragments gradually increase. Meanwhile, blasting craters are all circular under the various biaxial static stresses. Biaxial static stress has significant influences on the evolution of flaky failure zone, while the effect on the block failure zone and transition failure zone is relatively small. Finally, the mechanisms of the effect of biaxial in-situ stress on the initiation and propagation of blast-generated cracks, blasting crater morphology, and blasting fragments’ distribution were analyzed theoretically.HighlightsCrater blasting experiments on hard stone under various biaxial in-situ stresses were conducted.The effects of static stress on cracks, blasting crater, and blasting fragments are investigated.Quantitative relationships between in-situ stress and blasting crater parameters are examined.Mechanism analysis of biaxial in-situ stress affecting blasting.
Journal Article
Corrigendum to “Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway”
2017
In the article titled “Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway” [1], there were errors in the title, Introduction, Materials and Methods, and the legend of Figure 2, which should be corrected as follows:
Journal Article