Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
261 result(s) for "Peng, Junmin"
Sort by:
Antagonistic control of myofiber size and muscle protein quality control by the ubiquitin ligase UBR4 during aging
Sarcopenia is a degenerative condition that consists in age-induced atrophy and functional decline of skeletal muscle cells (myofibers). A common hypothesis is that inducing myofiber hypertrophy should also reinstate myofiber contractile function but such model has not been extensively tested. Here, we find that the levels of the ubiquitin ligase UBR4 increase in skeletal muscle with aging, and that UBR4 increases the proteolytic activity of the proteasome. Importantly, muscle-specific UBR4 loss rescues age-associated myofiber atrophy in mice. However, UBR4 loss reduces the muscle specific force and accelerates the decline in muscle protein quality that occurs with aging in mice. Similarly, hypertrophic signaling induced via muscle-specific loss of UBR4/poe and of ESCRT members (HGS/Hrs, STAM, USP8) that degrade ubiquitinated membrane proteins compromises muscle function and shortens lifespan in Drosophila by reducing protein quality control. Altogether, these findings indicate that these ubiquitin ligases antithetically regulate myofiber size and muscle protein quality control. Sarcopenia is the age-associated functional decline and atrophy of muscle fibers, and it has been proposed that it might be counteracted by inducing myofiber hypertrophy. Here, the authors show that expression levels of the ubiquitin ligase UBR4 are increased with ageing, and that whilst its genetic ablation rescues muscle atrophy, it is also associated with reduced protein quality and impaired force production in Drosophila and mouse models.
Novel specialized cell state and spatial compartments within the germinal center
Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division. Proliferating DZ (DZp) cells then transited into the larger DZ to become differentiating DZ (DZd) cells before re-entering the LZ. Multidimensional analysis revealed distinct molecular programs in each population commensurate with observed compartmentalization of noncompatible functions. These data provide a new three-cell population model that both orders critical GC functions and reveals essential molecular programs of humoral adaptive immunity. Germinal centers are typically divided into dark and light zones. Clark and colleagues identify ‘gray zone’ cyclin B1 + B cell clusters as sites of ongoing cell proliferation, and these cells are distinct from dark zone B cells that undergo AID-dependent somatic hypermutation. This separation of function safeguards B cells undergoing DNA replication against potential mutagenic events that could result in neoplastic transformation.
Proteomic landscape of Alzheimer’s Disease: novel insights into pathogenesis and biomarker discovery
Mass spectrometry-based proteomics empowers deep profiling of proteome and protein posttranslational modifications (PTMs) in Alzheimer’s disease (AD). Here we review the advances and limitations in historic and recent AD proteomic research. Complementary to genetic mapping, proteomic studies not only validate canonical amyloid and tau pathways, but also uncover novel components in broad protein networks, such as RNA splicing, development, immunity, membrane transport, lipid metabolism, synaptic function, and mitochondrial activity. Meta-analysis of seven deep datasets reveals 2,698 differentially expressed (DE) proteins in the landscape of AD brain proteome ( n  = 12,017 proteins/genes), covering 35 reported AD genes and risk loci. The DE proteins contain cellular markers enriched in neurons, microglia, astrocytes, oligodendrocytes, and epithelial cells, supporting the involvement of diverse cell types in AD pathology. We discuss the hypothesized protective or detrimental roles of selected DE proteins, emphasizing top proteins in “amyloidome” (all biomolecules in amyloid plaques) and disease progression. Comprehensive PTM analysis represents another layer of molecular events in AD. In particular, tau PTMs are correlated with disease stages and indicate the heterogeneity of individual AD patients. Moreover, the unprecedented proteomic coverage of biofluids, such as cerebrospinal fluid and serum, procures novel putative AD biomarkers through meta-analysis. Thus, proteomics-driven systems biology presents a new frontier to link genotype, proteotype, and phenotype, accelerating the development of improved AD models and treatment strategies.
Tau modification by the norepinephrine metabolite DOPEGAL stimulates its pathology and propagation
The noradrenergic locus ceruleus (LC) is the first site of detectable tau pathology in Alzheimer’s disease (AD), but the mechanisms underlying the selective vulnerability of the LC in AD have not been completely identified. In the present study, we show that DOPEGAL, a monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE), reacts directly with the primary amine on the Lys353 residue of tau to stimulate its aggregation and facilitate its propagation. Inhibition of MAO-A or mutation of the Lys353 residue to arginine (Lys353Arg) decreases tau Lys353–DOPEGAL levels and diminishes tau pathology spreading. Wild-type tau preformed fibrils (PFFs) trigger Lys353–DOPEGAL formation, tau pathology propagation and cognitive impairment in MAPT transgenic mice, all of which are attenuated with PFFs made from the Lys353Arg mutant. Thus, the selective vulnerability of LC neurons in AD may be explained, in part, by NE oxidation via MAO-A into DOPEGAL, which covalently modifies tau and accelerates its aggregation, toxicity and propagation. DOPEGAL, a metabolite of norepinephrine in the locus ceruleus, covalently modifies tau and accelerates its aggregation and propagation, leading to cognitive deficits in Alzheimer’s disease.
Ligand-induced monoubiquitination of BIK1 regulates plant immunity
Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens 1 – 3 . Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants 4 . The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS -INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)–BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2–BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR–RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling. The detection of microorganism-associated ligands by plant cells activates a signalling cascade in which the kinase BIK1 is monoubiquinated, released from the FLS2–BAK1 complex, and internalized by endocytosis.
Quantitative phosphoproteomic analysis of the molecular substrates of sleep need
Sleep and wake have global effects on brain physiology, from molecular changes 1 – 4 and neuronal activities to synaptic plasticity 3 – 7 . Sleep–wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep 8 – 11 . Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses 4 – 6 . Thus, the phosphorylation–dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep–wake homeostasis. A subset of synaptic proteins are cumulatively phosphorylated during wakefulness and dephosphorylated during sleep, in accordance with sleep need; this may represent a common mechanism underlying regulation of both synaptic homeostasis and sleep–wake homeostasis.
Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease
Background Based on amyloid cascade and tau hypotheses, protein biomarkers of different Aβ and tau species in cerebrospinal fluid (CSF) and blood/plasma/serum have been examined to correlate with brain pathology. Recently, unbiased proteomic profiling of these human samples has been initiated to identify a large number of novel AD biomarker candidates, but it is challenging to define reliable candidates for subsequent large-scale validation. Methods We present a comprehensive strategy to identify biomarker candidates of high confidence by integrating multiple proteomes in AD, including cortex, CSF and serum. The proteomes were analyzed by the multiplexed tandem-mass-tag (TMT) method, extensive liquid chromatography (LC) fractionation and high-resolution tandem mass spectrometry (MS/MS) for ultra-deep coverage. A systems biology approach was used to prioritize the most promising AD signature proteins from all proteomic datasets. Finally, candidate biomarkers identified by the MS discovery were validated by the enzyme-linked immunosorbent (ELISA) and TOMAHAQ targeted MS assays. Results We quantified 13,833, 5941, and 4826 proteins from human cortex, CSF and serum, respectively. Compared to other studies, we analyzed a total of 10 proteomic datasets, covering 17,541 proteins (13,216 genes) in 365 AD, mild cognitive impairment (MCI) and control cases. Our ultra-deep CSF profiling of 20 cases uncovered the majority of previously reported AD biomarker candidates, most of which, however, displayed no statistical significance except SMOC1 and TGFB2. Interestingly, the AD CSF showed evident decrease of a large number of mitochondria proteins that were only detectable in our ultra-deep analysis. Further integration of 4 cortex and 4 CSF cohort proteomes highlighted 6 CSF biomarkers (SMOC1, C1QTNF5, OLFML3, SLIT2, SPON1, and GPNMB) that were consistently identified in at least 2 independent datasets. We also profiled CSF in the 5xFAD mouse model to validate amyloidosis-induced changes, and found consistent mitochondrial decreases (SOD2, PRDX3, ALDH6A1, ETFB, HADHA, and CYB5R3) in both human and mouse samples. In addition, comparison of cortex and serum led to an AD-correlated protein panel of CTHRC1, GFAP and OLFM3. In summary, 37 proteins emerged as potential AD signatures across cortex, CSF and serum, and strikingly, 59% of these were mitochondria proteins, emphasizing mitochondrial dysfunction in AD. Selected biomarker candidates were further validated by ELISA and TOMAHAQ assays. Finally, we prioritized the most promising AD signature proteins including SMOC1, TAU, GFAP, SUCLG2, PRDX3, and NTN1 by integrating all proteomic datasets. Conclusions Our results demonstrate that novel AD biomarker candidates are identified and confirmed by proteomic studies of brain tissue and biofluids, providing a rich resource for large-scale biomarker validation for the AD community.
Hsa_circ_0004872 alleviates meningioma progression by sponging miR-190a-3p/PTEN signaling
Background Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. Methods Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. Results Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. Conclusion In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions. Highlights Hsa_circ_0004872 exhibits low expression in meningioma, correlating with a diminished survival rate among patients. Overexpression of hsa_circ_0004872 impedes meningioma cell proliferation while enhancing apoptosis. Hsa_circ_0004872 acts as a negative regulator of miR-190a-3p by functioning as a miRNA sponge. Upregulation of miR-190a-3p counteracts the anti-tumor effects induced by hsa_circ_0004872 overexpression in vitro. Inhibition of miR-190a-3p reduces cell proliferation and heightens apoptosis by targeting the PTEN/PI3K/AKT signaling pathway.
Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a
Genetic analyses have linked microRNA-137 (MIR137) to neuropsychiatric disorders, including schizophrenia and autism spectrum disorder. miR-137 plays important roles in neurogenesis and neuronal maturation, but the impact of miR-137 loss-of-function in vivo remains unclear. Here we show the complete loss of miR-137 in the mouse germline knockout or nervous system knockout (cKO) leads to postnatal lethality, while heterozygous germline knockout and cKO mice remain viable. Partial loss of miR-137 in heterozygous cKO mice results in dysregulated synaptic plasticity, repetitive behavior, and impaired learning and social behavior. Transcriptomic and proteomic analyses revealed that the miR-137 mRNA target, phosphodiesterase 10a (Pde10a), is elevated in heterozygous knockout mice. Treatment with the Pde10a inhibitor papaverine or knockdown of Pde10a ameliorates the deficits observed in the heterozygous cKO mice. Collectively, our results suggest that MIR137 plays essential roles in postnatal neurodevelopment and that dysregulation of miR-137 potentially contributes to neuropsychiatric disorders in humans.
SMAP is a pipeline for sample matching in proteogenomics
The integration of genomics and proteomics data (proteogenomics) holds the promise of furthering the in-depth understanding of human disease. However, sample mix-up is a pervasive problem in proteogenomics because of the complexity of sample processing. Here, we present a pipeline for Sample Matching in Proteogenomics (SMAP) to verify sample identity and ensure data integrity. SMAP infers sample-dependent protein-coding variants from quantitative mass spectrometry (MS), and aligns the MS-based proteomic samples with genomic samples by two discriminant scores. Theoretical analysis with simulated data indicates that SMAP is capable of uniquely matching proteomic and genomic samples when ≥20% genotypes of individual samples are available. When SMAP was applied to a large-scale dataset generated by the PsychENCODE BrainGVEX project, 54 samples (19%) were corrected. The correction was further confirmed by ribosome profiling and chromatin sequencing (ATAC-seq) data from the same set of samples. Our results demonstrate that SMAP is an effective tool for sample verification in a large-scale MS-based proteogenomics study. SMAP is publicly available at https://github.com/UND-Wanglab/SMAP , and a web-based version can be accessed at https://smap.shinyapps.io/smap/ . Sample mix-up is a potential problem in large-scale omic studies due to the complexity of sample processing. Here, the authors present a pipeline for sample matching in proteogenomics to verify sample identity and ensure data integrity.