Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,967 result(s) for "Peng, Tong"
Sort by:
Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and the biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including HCC. Taurine Up-regulated Gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is found to be disregulated in non-small cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (ESCC). However, its clinical significance and potential role in HCC remain unclear. Methods and results In this study, expression of TUG1 was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qPCR). TUG1 expression was up-regulated in HCC tissues and the higher expression of TUG1 was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, silencing of TUG1 expression inhibited HCC cell proliferation, colony formation, tumorigenicity and induced apoptosis in HCC cell lines. We also found that TUG1 overexpression was induced by nuclear transcription factor SP1 and TUG1 could epigeneticly repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region. Conclusion Our results suggest that lncRNA TUG1, as a growth regulator, may serve as a new diagnostic biomarker and therapy target for HCC.
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.
A review on in situ monitoring technology for directed energy deposition of metals
Directed energy deposition (DED) is an important additive manufacturing method for producing or repairing high-end and high-value equipment. Meanwhile, the lack of reliable and uniform qualities is a key problem in DED applications. With the development of sensing devices and control systems, in situ monitoring (IM) and adaptive control (IMAC) technology is an effective method to enhance the reliability and repeatability of DED. In this paper, we review current IM technologies in IMAC for metal DED. First, this paper describes the important sensing signals and equipment to exhibit the research status in detail. Meanwhile, common problems that arise when gathering these signals and resolvent methods are presented. Second, process signatures obtained from sensing signals and transfer approaches from sensing signals for processing signatures are shown. Third, this work reviews the developments of the IM of product qualities and illustrates ways to realize quality monitoring. Lastly, this paper specifies the main existing problems and future research of IM in metal DED.
KLF5 and MYC modulated LINC00346 contributes to gastric cancer progression through acting as a competing endogeous RNA and indicates poor outcome
It was found in this study that long intergenic non-protein coding RNA 346 (LINC00346) was an lncRNA aberrantly expressed in gastric cancer (GC) based on multiple Gene Expression Omnibus (GEO) databases of GC cohorts. The LINC00346 gene was recurrently amplified and upregulated in GC, and its expression was positively correlated with poor pathologic stage, large tumor size, and poor prognosis. In addition, the oncogenic transcription factors KLF5 and MYC could bind to the LINC00346 promoter and enhance its expression. Gene Set Enrichment Analysis (GSEA) in the GEO datasets revealed that cell cycle and focal adhesion genes were enriched in patients with high LINC00346 expression. In vitro and in vivo assays of LINC00346 alterations revealed a complex integrated phenotype affecting cell growth, migration and invasion. Strikingly, high-throughput sequencing analysis after LINC00346 alterations highlighted alterations in cell cycle and focal adhesion pathways in GC cells. Mechanistically, argonaute 2 (Ago2) was recruited by LINC00346, which functioned as a molecular sponge for miR-34a-5p by antagonizing its ability to repress CD44, NOTCH1, and AXL protein translation. Taken together, our findings support a model in which the KLF5, MYC/LINC00346/miR-34a-5p cross-talk served as critical effectors in GC tumorigenesis and progression, suggesting a new therapeutic direction in the treatment of GC.
Improving the Accuracy of Direction of Arrival Estimation with Multiple Signal Inputs Using Deep Learning
In this paper, an innovative cyclic noise reduction method and an improved CAPON algorithm (also the called minimum variance distortionless response (MVDR) algorithm) are proposed to improve the accuracy and reliability of DOA (direction of arrival) estimation. By processing the eigenvalues obtained from the covariance matrix of the received signal, the signal-to-noise ratio (SNR) can be increased by up to 5 dB by the cyclic noise reduction method, which will improve the DOA estimation accuracy. The improved CAPON algorithm has a convolution neural network (CNN) structure, whose input is the processed covariance matrix of the received signal, and the CAPON spectral value is used as the training label to obtain the estimated spatial spectrum. It retains the advantages of the CAPON algorithm, which can achieve blind source estimation, and simulations show that the proposed algorithm exhibits a better performance than the traditional algorithm in conditions of various SNRs and snapshot numbers. The simulation results show that, based on a certain SNR, the root mean square error (RMSE) of the improved CAPON algorithm can be reduced from 0.86° to 0.8° compared to traditional algorithms, and the angle estimation error can be decreased by up to about 0.3°. With the help of the cyclic noise reduction method, the angle estimation error decreases from 0.04° to 0.02°.
Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16
Background Mounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown. Methods Expression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with sh PVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes. Results The higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer. Conclusions Together, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.
Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer
Background Gastric cancer is the second leading cause of cancer death and remains a major clinical challenge due to poor prognosis and limited treatment options. Long noncoding RNAs (lncRNAs) have emerged recently as major players in tumor biology and may be used for cancer diagnosis, prognosis, and potential therapeutic targets. Although downregulation of lncRNA GAS5 (Growth Arrest-Specific Transcript) in several cancers has been studied, its role in gastric cancer remains unknown. Our studies were designed to investigate the expression, biological role and clinical significance of GAS5 in gastric cancer. Methods Expression of GAS5 was analyzed in 89 gastric cancer tissues and five gastric cancer cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Over-expression and RNA interference (RNAi) approaches were used to investigate the biological functions of GAS5. The effect of GAS5 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by hochest stainning. Gastric cancer cells transfected with pCDNA3.1 -GAS5 were injected into nude mice to study the effect of GAS5 on tumorigenesis in vivo . Protein levels of GAS5 targets were determined by western blot analysis. Differences between groups were tested for significance using Student’s t -test (two-tailed). Results We found that GAS5 expression was markedly downregulated in gastric cancer tissues, and associated with larger tumor size and advanced pathologic stage. Patients with low GAS5 expression level had poorer disease-free survival (DFS; P = 0.001) and overall survival (OS; P < 0.001) than those with high GAS5 expression. Further multivariable Cox regression analysis suggested that decreased GAS5 was an independent prognostic indicator for this disease (P = 0.006, HR = 0.412; 95%CI = 2.218–0.766). Moreover, ectopic expression of GAS5 was demonstrated to decrease gastric cancer cell proliferation and induce apoptosis in vitro and in vivo , while downregulation of endogenous GAS5 could promote cell proliferation. Finally, we found that GAS5 could influence gastric cancer cells proliferation, partly via regulating E2F1 and P21 expression. Conclusion Our study presents that GAS5 is significantly downregulated in gastric cancer tissues and may represent a new marker of poor prognosis and a potential therapeutic target for gastric cancer intervention.
Assessment of the Genetic Diversity of Different Job's Tears (Coix lacryma-jobi L.) Accessions and the Active Composition and Anticancer Effect of Its Seed Oil
Job's tears (Coix lachryma-jobi L.) is an important crop used as food and herbal medicine in Asian countries. A drug made of Job's tears seed oil has been clinically applied to treat multiple cancers. In this study, the genetic diversity of Job's tears accessions and the fatty acid composition, triglyceride composition, and anti-proliferative effect of Job's tears seed oil were analyzed using morphological characteristics and ISSR markers, GC-MS, HPLC-ELSD, and the MTT method. ISSR analysis demonstrated low genetic diversity of Job's tears at the species level (h = 0.21, I = 0.33) and the accession level (h = 0.07, I = 0.10), and strong genetic differentiation (GST = 0.6702) among all accessions. It also clustered the 11 accessions into three cultivated clades corresponding with geographical locations and two evidently divergent wild clades. The grouping patterns based on morphological characteristics and chemical profiles were in accordance with those clustered by ISSR analysis. Significant differences in morphological characteristics, fatty acid composition, triglyceride composition, and inhibition rates of seed oil were detected among different accessions, which showed a highly significant positive correlation with genetic variation. These results suggest that the seed morphological characteristics, fatty acid composition, and triglyceride composition may be mainly attributed to genetic factors. The proportion of palmitic acid and linoleic acid to oleic acid displayed a highly significant positive correlation with the inhibition rates of Job's tears seed oil for T24 cells, and thus can be an important indicator for quality control for Job's tears.
Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains
A novel hyperbranched polymer with polyacrylamide side chains (HAPAM) was synthesized by aqueous solution polymerization using acrylic acid, acrylamide, 2-acrylamido-2-methyl-1-propanesulfonic acid, hydrophobic monomer of dimethyl octadecyl ammonium chloride, and the homemade skeleton monomer of modified-M2.0 as raw materials and (NH4)2S2O8-NaHSO3 as initiator. The molecular structure, functional groups, and surface morphology of HAPAM were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectroscopy, and scanning electron microscopy. It was found that the performance of HAPAM solution was higher than that of ordinary polyacrylamide solution in terms of thickening ability, shearing resistance, thermal endurance, salt-resistance, resistance-coefficient and residual-resistance-coefficient, ability to reduce interfacial tension between polymer solution and crude oil, and oil-displacement-efficiency. In particular, the enhanced oil recovery of the HAPAM solution was 13.03%, and the improvement of shearing resistance and immunity to chromatographic separation were simultaneously achieved by the HAPAM solution. These results indicate that the successful synthesis of the novel HAPAM opens a promising strategy for developing new high-performance oil-displacing polymers.
LOC101929709 promotes gastric cancer progression by aiding LIN28B to stabilize c-MYC mRNA
Background LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. Methods Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. Results LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. Conclusions The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.