Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,987 result(s) for "Peng, W X"
Sort by:
LncRNA-mediated regulation of cell signaling in cancer
To date, a large number of long non-coding RNAs (lncRNAs) have been recently discovered through functional genomics studies. Importantly, lncRNAs have been shown, in many cases, to function as master regulators for gene expression and thus, they can play a critical role in various biological functions and disease processes including cancer. Although the lncRNA-mediated gene expression involves various mechanisms, such as regulation of transcription, translation, protein modification, and the formation of RNA–protein or protein–protein complexes, in this review, we discuss the latest developments primarily in important cell signaling pathways regulated by lncRNAs in cancer.
Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis
BC200 is a long non-coding RNA (lncRNA) that has been implicated in the regulation of protein synthesis, yet whether dysregulation of BC200 contributes to the pathogenesis of human diseases remains elusive. In this study, we show that BC200 is upregulated in breast cancer; among breast tumor specimens there is a higher level of BC200 in estrogen receptor (ER) positive than in ER-negative tumors. Further experiments show that activation of estrogen signaling induces expression of BC200. To determine the significance of ER-regulated BC200 expression, we knockout (KO) BC200 by CRISPR/Cas9. BC200 KO suppresses tumor cell growth in vitro and in vivo by expression of the pro-apoptotic Bcl-xS isoform. Mechanistically, BC200 contains a 17-nucleotide sequence complementary to Bcl-x pre-mRNA, which may facilitate its binding to Bcl-x pre-mRNA and recruitment of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a known splicing factor. Consequently, hnRNP A2/B1 interferes with association of Bcl-x pre-mRNA with the Bcl-xS-promoting factor Sam68, leading to a blockade of Bcl-xS expression. Together, these results suggest that BC200 plays an oncogenic role in breast cancer. Thus, BC200 may serve as a prognostic marker and possible target for attenuating deregulated cell proliferation in estrogen-dependent breast cancer.
Egr-1 regulates irradiation-induced autophagy through Atg4B to promote radioresistance in hepatocellular carcinoma cells
Although hepatocellular carcinoma (HCC) is usually response to radiation therapy, radioresistance is still the major obstacle that limits the efficacy of radiotherapy for HCC patients. Therefore, further investigation of underlying mechanisms in radioresistant HCC cells is warranted. In this study, we determined the effect of early growth response factor (Egr-1) on irradiation-induced autophagy and radioresistance in HCC cell lines SMMC-7721 and HepG2. We showed that autophagy-related gene 4B (Atg4B) is induced by Egr-1 upon ionizing radiation (IR) in HCC cells. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) revealed that Egr-1 binds to the Atg4B promoter to upregulate its expression in HCC cells. Suppression of Egr-1 function by dominant-negative Egr-1 dampens IR-induced autophagy, cell migration, and increases cell sensitivity to radiotherapy. Together, these results suggest that Egr-1 contributes to HCC radioresistance through directly upregulating target gene Atg4B, which may serve as a protective mechanism by preferential activation of the autophagy.
Identifying high-risk areas of schistosomiasis and associated risk factors in the Poyang Lake region, China
The epidemiology of schistosomiasis japonicum over small areas remains poorly understood, and this is particularly true in China. We aimed to identify high-risk areas for schistosomiasis and associated risk factors in the Poyang Lake region, China. A cross-sectional study was conducted and 60 of 920 persons (6·5%) were found to be infected with Schistosoma japonicum. Locations of households and snail habitats were determined using a hand-held global positioning system. We mapped the data in a geographical information system and used spatial scan statistics to explore clustering of infection, logistic regression and Bayesian geostatistical models to identify risk factors for each individual's infection status and multinomial logistic regression to identify risk factors for living in a cluster area. The risk of schistosomiasis was spatially clustered and higher in fishermen and males, not in persons who lived in close proximity to snail habitats and infected water sources. This study has demonstrated significant spatial variation in the prevalence of schistosomiasis at a small spatial scale. The results suggest that demographic factors (gender, occupation) rather than the distance to infected water are driving human transmission at small-scale spatial levels. Such information can be used to plan locally targeted interventions based on anthelminthic drug administration, snail control and sanitation improvement.
Location of active transmission sites of Schistosoma japonicum in lake and marshland regions in China
Schistosomiasis control in China has, in general, been very successful during the past several decades. However, the rebounding of the epidemic situation in some areas in recent years raises concerns about a sustainable control strategy of which locating active transmission sites (ATS) is a necessary first step. This study presents a systematic approach for locating schistosomiasis ATS by combining the approaches of identifying high risk regions for schisotosmiasis and extracting snail habitats. Environmental, topographical, and human behavioural factors were included in the model. Four significant high-risk regions were detected and 6 ATS were located. We used the normalized difference water index (NDWI) combined with the normalized difference vegetation index (NDVI) to extract snail habitats, and the pointwise ‘P-value surface’ approach to test statistical significance of predicted disease risk. We found complicated non-linear relationships between predictors and schistosomiasis risk, which might result in serious biases if data were not properly treated. We also found that the associations were related to spatial scales, indicating that a well-designed series of studies were needed to relate the disease risk with predictors across various study scales. Our approach provides a useful tool, especially in the field of vector-borne or environment-related diseases.
Localization and activity of calmodulin is involved in cell–cell adhesion of tumor cells and endothelial cells in response to hypoxic stress
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress.
Observational Results of the ChangE-1 Solar X-Ray Monitor
We present the primary observations of the Solar X-ray Monitor (SXM) payload onboard the ChangE-1 lunar exploration satellite, which was launched on 24 October 2007. The SXM payload uses a solid-state silicon P-I-N photo-diode (Si-PIN) whose dynamic energy ranges from 1 keV to 10 keV. The long-term integrated spectra at different solar-activity levels as observed by the SXM are presented. By fitting these spectra with an optically thin plasma model, the two-minute temperature variation of the solar coronal plasma during a solar flare is also presented.
The First GECAM Observation Results on Terrestrial Gamma‐Ray Flashes and Terrestrial Electron Beams
Gravitational‐wave high‐energy Electromagnetic Counterpart All‐sky Monitor (GECAM) is a space‐borne instrument dedicated to monitoring high‐energy transients, including Terrestrial Gamma‐ray Flashes (TGFs) and Terrestrial Electron Beams (TEBs). We implemented a TGF/TEB search algorithm for GECAM, with which 147 bright TGFs, 2 typical TEBs and 2 special TEB‐like events are identified during an effective observation time of ∼9 months. We show that, with gamma‐ray and charged particle detectors, GECAM can effectively identify and distinguish TGFs and TEBs, and measure their temporal and spectral properties in detail. A very high TGF‐lightning association rate of ∼80% is obtained between GECAM and GLD360 in east Asia region. Plain Language Summary Terrestrial gamma‐ray flashes (TGFs) and Terrestrial Electron Beams (TEBs) represent the most energetic radioactive phenomena in the atmosphere of the Earth. They reflect a natural particle accelerator that can boost electrons up to at least several tens of mega electron volts and produce gamma‐ray radiation. With novel detection technologies, Gravitational‐wave high‐energy Electromagnetic Counterpart All‐sky Monitor (GECAM) is a new powerful instrument to observe TGFs and TEBs, as well as study their properties. For example, it is difficult for most space‐borne high‐energy instruments to distinguish between TGFs and TEBs. However, we show here that, with the joint observation of gamma‐ray and charged particle detectors, GECAM can effectively identify TGFs and TEBs. GECAM can also reveal their fine features in the light curves and spectra. Key Points During 9‐month observation, Gravitational‐wave high‐energy Electromagnetic Counterpart All‐sky Monitor (GECAM) has detected 147 bright Terrestrial Gamma‐ray Flashes (TGFs), 2 typical Terrestrial Electron Beams (TEBs), and 2 special TEB‐like events With novel detector design, GECAM can effectively classify TGFs and TEBs, and reveal their fine temporal features We obtained a very high TGF‐lightning association rate (∼80%) between GECAM and GLD360 in east Asia region
Laboratory and Semi-field Evaluation on the Biological Control of Oncomelania hupensis Snail (Gastropoda: Pomatiopsidae), the Intermediate Host of Schistosoma japonicum, using Procambarus clarkii crayfish (Crustacea: Cambaridae)
In this paper, Procambarus clarkii crayfish was evaluated as a potential biological control agent against Oncomelania hupensis snail, the intermediate host of Schistosoma japonicum. Both sexes of the crayfish of different sizes were allowed to feed upon three different snail lengths: < 5 mm, 5-7 mm and > 7 mm, in the laboratory; and outdoors in simulated semi-field microcosms for 24 h. Snail consumption rates by the crayfish varied according to their size and sex. P. clarkii fed mostly on small and young snails (< 5 mm, 5-7 mm) in the laboratory as well in the semi-field microcosms. Large male of P. clarkii consumed more snails than large females and the same was for small males compared to small females. The results indicated that P. clarkia crayfish was efficient in reducing O. hupensis snail populations through predatory interaction, as evidenced by the laboratory and semi-field assessment.