Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,500
result(s) for
"Peng Xiang"
Sort by:
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B
2021
Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10
–3
and 1.92 × 10
–3
nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.
Journal Article
Circulating tumor cell detection and single‐cell analysis using an integrated workflow based on ChimeraX®‐i120 Platform: A prospective study
2021
We developed an integrated workflow for circulating tumor cell (CTC) detection and downstream single‐cell analysis based on a novel ChimeraX®‐i120 platform. The platform facilitates negative enrichment, immunofluorescent labeling, and machine learning‐based identification of CTCs. The CTC captured by the platform is also compatible for single‐cell molecular analysis. In this study, potential utility of our workflow was validated in clinical setting.
Circulating tumor cell (CTC) analysis holds great potential to be a noninvasive solution for clinical cancer management. A complete workflow that combined CTC detection and single‐cell molecular analysis is required. We developed the ChimeraX®‐i120 platform to facilitate negative enrichment, immunofluorescent labeling, and machine learning‐based identification of CTCs. Analytical performances were evaluated, and a total of 477 participants were enrolled to validate the clinical feasibility of ChimeraX®‐i120 CTC detection. We analyzed copy number alteration profiles of isolated single cells. The ChimeraX®‐i120 platform had high sensitivity, accuracy, and reproducibility for CTC detection. In clinical samples, an average value of > 60% CTC‐positive rate was found for five cancer types (i.e., liver, biliary duct, breast, colorectal, and lung), while CTCs were rarely identified in blood from healthy donors. In hepatocellular carcinoma patients treated with curative resection, CTC status was significantly associated with tumor characteristics, prognosis, and treatment response (all P < 0.05). Single‐cell sequencing analysis revealed that heterogeneous genomic alteration patterns resided in different cells, patients, and cancers. Our results suggest that the use of this ChimeraX®‐i120 platform and the integrated workflow has validity as a tool for CTC detection and downstream genomic profiling in the clinical setting.
Journal Article
Gas Sensors Based on Single-Wall Carbon Nanotubes
2022
Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.
Journal Article
On Galilean conformal bootstrap
by
Chen, Bin
,
Yu, Zhe-fei
,
Liu, Reiko
in
Algebra
,
Classical and Quantum Gravitation
,
Conformal and W Symmetry
2021
A
bstract
In this work, we develop conformal bootstrap for Galilean conformal field theory (GCFT). In a GCFT, the Hilbert space could be decomposed into quasiprimary states and its global descendants. Different from the usual conformal field theory, the quasiprimary states in a GCFT constitute multiplets, which are block-diagonized under the Galilean boost operator. More importantly the multiplets include the states of negative norms, indicating the theory is not unitary. We compute global blocks of the multiplets, and discuss the expansion of four-point functions in terms of the global blocks of the multiplets. Furthermore we do the harmonic analysis for the Galilean conformal symmetry and obtain an inversion formula. As the first step to apply the Galilean conformal bootstrap, we construct generalized Galilean free theory (GGFT) explicitly. We read the data of GGFT by using Taylor series expansion of four-point function and the inversion formula independently, and find exact agreement. We discuss some novel features in the Galilean conformal bootstrap, due to the non-semisimpleness of the Galilean conformal algebra and the non-unitarity of the GCFTs.
Journal Article
Off-lightcone Wilson-line operators in gradient flow
by
Wang, Xiang-Peng
,
Brambilla, Nora
in
Classical and Quantum Gravitation
,
Decay
,
Distribution functions
2024
A
bstract
Off-lightcone Wilson-line operators are constructed using local operators connected by time-like or space-like Wilson lines, which ensure gauge invariance. Off-lightcone Wilson-line operators have broad applications in various contexts. For instance, space-like Wilson-line operators play a crucial role in determining quasi-distribution functions (quasi-PDFs), while time-like Wilson-line operators are essential for understanding quarkonium decay and production within the potential non-relativistic QCD (pNRQCD) framework. In this work, we establish a systematic approach for calculating the matching from the gradient-flow scheme to the
MS
¯
scheme in the limit of small flow time for off-lightcone Wilson-line operators. By employing the one-dimensional auxiliary-field formalism, we simplify the matching procedure, reducing it to the matching of local current operators. We provide one-loop level matching coefficients for these local current operators. For the case of hadronic matrix element related to the quark quasi-PDFs, we show at one-loop level that the finite flow time effect is very small as long as the flow radius is smaller than the physical distance
z
, which is usually satisfied in lattice gradient flow computations. Applications include lattice gradient flow computations of quark/gluon quasi-PDFs, gluonic correlators related to quarkonium decay and production in pNRQCD, and spin-dependent potentials in terms of chromoelectric and chromomagnetic field insertions into a Wilson loop.
Journal Article
Rényi mutual information in holographic warped CFTs
by
Chen, Bin
,
Song, Wei
,
Hao, Peng-Xiang
in
AdS-CFT Correspondence
,
Boundary conditions
,
Classical and Quantum Gravitation
2019
A
bstract
The study of Rényi mutual information (RMI) sheds light on the AdS/CFT correspondence beyond classical order. In this article, we study the Rényi mutual in- formation between two intervals at large distance in two-dimensional holographic warped conformal field theory, which is conjectured to be dual to gravity on AdS
3
or warped AdS
3
spacetimes under Dirichlet-Neumann boundary conditions. By using the operator product expansion of twist operators up to level 3, we read the leading oder and the next-to-leading order RMI in the large central charge and small cross-ratio limits. The leading order result is furthermore confirmed using the conformal block expansion. Finally, we match the next-to-leading order result by a 1-loop calculation in the bulk.
Journal Article
A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity
by
Liu, Yan
,
Chen, Xiang-Zhao
,
Peng, Xiang-Jun
in
Alcohol
,
Antiviral agents
,
Antiviral Agents - chemistry
2023
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Journal Article
Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold
2019
Inorganic chalcogenides are traditional high-performance thermoelectric materials. However, they suffer from intrinsic brittleness and it is very difficult to obtain materials with both high thermoelectric ability and good flexibility. Here, we report a flexible thermoelectric material comprising highly ordered Bi2Te3 nanocrystals anchored on a single-walled carbon nanotube (SWCNT) network, where a crystallographic relationship exists between the Bi2Te3 <\\[\\bar{1}2\\bar{1}0\\]> orientation and SWCNT bundle axis. This material has a power factor of ~1,600 μW m−1 K−2 at room temperature, decreasing to 1,100 μW m−1 K−2 at 473 K. With a low in-plane lattice thermal conductivity of 0.26 ± 0.03 W m−1 K−1, a maximum thermoelectric figure of merit (ZT) of 0.89 at room temperature is achieved, originating from a strong phonon scattering effect. The origin of the excellent flexibility and thermoelectric performance of the Bi2Te3–SWCNT material is attributed, by experimental and computational evidence, to its crystal orientation, interface and nanopore structure. Our results provide insight into the design and fabrication of high-performance flexible thermoelectric materials.
Journal Article
In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy
2024
Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (
Gi-F-CAA
). Under the acidic microenvironment of the tumor, the
Gi-F-CAA
self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (
AEB
) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with
AEB
effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.
The poor tumour delivery efficacy of GPX4 inhibitor has dampened its in vivo therapeutic value. Here the authors report a peptide ferriporphyrin conjugate to improve tumour penetration, endocytosis and GPX4 inhibition, synergistically enhancing its anticancer activity by ferroptosis.
Journal Article
QCD static force in gradient flow
by
Chung, Hee Sok
,
Vairo, Antonio
,
Wang, Xiang-Peng
in
Classical and Quantum Gravitation
,
Convergence
,
Elementary Particles
2022
A
bstract
We compute the QCD static force and potential using gradient flow at next-to-leading order in the strong coupling. The static force is the spatial derivative of the static potential: it encodes the QCD interaction at both short and long distances. While on the one side the static force has the advantage of being free of the
O
(Λ
QCD
) renormalon affecting the static potential when computed in perturbation theory, on the other side its direct lattice QCD computation suffers from poor convergence. The convergence can be improved by using gradient flow, where the gauge fields in the operator definition of a given quantity are replaced by flowed fields at flow time
t
, which effectively smear the gauge fields over a distance of order
t
, while they reduce to the QCD fields in the limit
t
→ 0. Based on our next-to-leading order calculation, we explore the properties of the static force for arbitrary values of
t
, as well as in the
t
→ 0 limit, which may be useful for lattice QCD studies.
Journal Article