Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
429 result(s) for "Penninger, Josef M"
Sort by:
A microfluidic platform integrating functional vascularized organoids-on-chip
The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics. Vascularization remains a significant challenge in organoid technology. Here, the authors develop a microfluidic platform that enhances organoid growth, function and maturation, by establishing functional perfusable vascular networks.
The RANKL-RANK Story
Abstract Receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) have originally been described for their key roles in bone metabolism and the immune system. Subsequently, it has been shown that the RANKL-RANK system is critical in the formation of mammary epithelia in lactating females and the thermoregulation of the central nervous system. RANKL and RANK are under the tight control of the female sex hormones estradiol and progesterone. A reduction of the circulating female sex hormones leading to an increase in RANKL-RANK signaling is the leading cause of osteoporosis in postmenopausal women. Denosumab, a human monoclonal anti-RANKL antibody, has been approved for the treatment of postmenopausal osteoporosis, where it is showing great promise. In addition, RANKL-RANK signaling also plays a critical role in other bone pathologies, bone metastasis or hormone-driven breast cancer. This review will highlight some of the functions of RANKL-RANK in bone turnover, the immune system and brain with a focus on the regulatory role of the female sex hormones.
Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19
Seventeen years after the epidemic of SARS coronavirus, a novel coronavirus SARS-CoV-2-emerged resulting in an unprecedented pandemic. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2 as well as the SARS coronavirus. Despite many similarities to SARS coronavirus, SARS-CoV-2 exhibits a higher affinity to ACE2 and shows higher infectivity and transmissibility, resulting in explosive increase of infected people and COVID-19 patients. Emergence of the variants harboring mutations in the receptor-binding domain of the Spike protein has drawn critical attention to the interaction between ACE2 and Spike and the efficacies of vaccines and neutralizing antibodies. ACE2 is a carboxypeptidase which degrades angiotensin II, B1-bradykinin, or apelin, and thereby is a critical regulator of cardiovascular physiology and pathology. In addition, the enzymatic activity of ACE2 is protective against acute respiratory distress syndrome (ARDS) caused by viral and non-viral pneumonias, aspiration, or sepsis. Upon infection, both SARS-CoV-2 and SARS coronaviruses downregulates ACE2 expression, likely associated with the pathogenesis of ARDS. Thus, ACE2 is not only the SARS-CoV-2 receptor but might also play an important role in multiple aspects of COVID-19 pathogenesis and possibly post-COVID-19 syndromes. Soluble forms of recombinant ACE2 are currently utilized as a pan-variant decoy to neutralize SARS-CoV-2 and a supplementation of ACE2 carboxypeptidase activity. Here, we review the role of ACE2 in the pathology of ARDS in COVID-19 and the potential application of recombinant ACE2 protein for treating COVID-19.
A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes
Crosslinking-mass spectrometry (XL-MS) serves to identify interaction sites between proteins. Numerous search engines for crosslink identification exist, but lack of ground truth samples containing known crosslinks has precluded their systematic validation. Here we report on XL-MS data arising from measuring synthetic peptide libraries that provide the unique benefit of knowing which identified crosslinks are true and which are false. The data are analysed with the most frequently used search engines and the results filtered to an estimated false discovery rate of 5%. We find that the actual false crosslink identification rates range from 2.4 to 32%, depending on the analysis strategy employed. Furthermore, the use of MS-cleavable crosslinkers does not reduce the false discovery rate compared to non-cleavable crosslinkers. We anticipate that the datasets acquired during this research will further drive optimisation and development of XL-MS search engines, thereby advancing our understanding of vital biological interactions. Validating crosslinking-mass spectrometry workflows is hampered by the lack of a ground truth to assess the robustness of the crosslink identifications. Here, the authors present a synthetic library of crosslinked peptides, enabling unambiguous discrimination of correct and incorrect crosslink identifications.
Comparative glycoproteomics of stem cells identifies new players in ricin toxicity
A novel quantitative approach to identify intact glycopeptides from comparative proteomic data sets, allowing inference of complex glycan structures and direct mapping of them to sites within the associated proteins at the proteome scale. Pinpointing glycoproteins The activity of more than half of human proteins is modified by their attachment to carbohydrate structures. To improve the identification and functional validation of such protein glycosylation, Josef Penninger and colleagues have developed a proteomics-based approach to identifying intact glycopeptides. The technique has high specificity and can pinpoint the location within the proteins where the glycosyl group has attached. The authors used their approach on human and mouse embryonic stem cells and identified nearly twice as many glycoproteins than were previously known. This analysis additionally led to the identification of several glycosylated 'stemness' factors, as well as of evolutionarily conserved and species-specific glycoproteins. The team also used the method to provide molecular insights into the toxicity of the bioweapon ricin. Glycosylation, the covalent attachment of carbohydrate structures onto proteins, is the most abundant post-translational modification 1 . Over 50% of human proteins are glycosylated, which alters their activities in diverse fundamental biological processes 2 , 3 . Despite the importance of glycosylation in biology 4 , the identification and functional validation of complex glycoproteins has remained largely unexplored. Here we develop a novel quantitative approach to identify intact glycopeptides from comparative proteomic data sets, allowing us not only to infer complex glycan structures but also to directly map them to sites within the associated proteins at the proteome scale. We apply this method to human and mouse embryonic stem cells to illuminate the stem cell glycoproteome. This analysis nearly doubles the number of experimentally confirmed glycoproteins, identifies previously unknown glycosylation sites and multiple glycosylated stemness factors, and uncovers evolutionarily conserved as well as species-specific glycoproteins in embryonic stem cells. The specificity of our method is confirmed using sister stem cells carrying repairable mutations in enzymes required for fucosylation, Fut9 and Slc35c1. Ablation of fucosylation confers resistance to the bioweapon ricin 5 , 6 , and we discover proteins that carry a fucosylation-dependent sugar code for ricin toxicity. Mutations disrupting a subset of these proteins render cells ricin resistant, revealing new players that orchestrate ricin toxicity. Our comparative glycoproteomics platform, SugarQb, enables genome-wide insights into protein glycosylation and glycan modifications in complex biological systems.
LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption
LGR4 has been identified as a new receptor for RANKL in bone cells where it opposes RANK signaling to inhibit osteoclasts differentiation, and its therapeutic targeting promotes reduced bone loss in three mouse models of osteoporosis. Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gα q and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body ( Lgr4 −/− ) and monocyte conditional knockout mice of Lgr4 ( Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo . Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.
Evidence for osteocyte regulation of bone homeostasis through RANKL expression
To date, the dogma in the field has been that RANKL, an essential cytokine in osteoclast maturation, is released by osteoblasts as a way to coordinate bone growth and bone loss during adult bone remodeling. Now, Hiroshi Takayanagi and colleagues, as well as Charles O'Brien and colleagues, have independently found that osteocytes are the predominant source of RANKL in the adult mouse. As RANKL signaling is a key target in treating osteoporosis, these results have potentially important implications for disease management. Osteocytes embedded in bone have been postulated to orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts. We find here that purified osteocytes express a much higher amount of receptor activator of nuclear factor-κB ligand (RANKL) and have a greater capacity to support osteoclastogenesis in vitro than osteoblasts and bone marrow stromal cells. Furthermore, the severe osteopetrotic phenotype that we observe in mice lacking RANKL specifically in osteocytes indicates that osteocytes are the major source of RANKL in bone remodeling in vivo .
Generation of complex bone marrow organoids from human induced pluripotent stem cells
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases. The authors describe stem cell-derived bone marrow organoids that accurately model the structural and functional properties of the human bone marrow niche.
ACE2-like enzyme B38-CAP suppresses abdominal sepsis and severe acute lung injury
Angiotensin-converting enzyme 2 (ACE2) is the carboxypeptidase to degrade angiotensin II (Ang II) to angiotensin 1–7 (Ang 1–7) and improves the pathologies of cardiovascular disease and acute respiratory distress syndrome (ARDS)/acute lung injury. B38-CAP is a bacteria-derived ACE2-like carboxypeptidase as potent as human ACE2 and ameliorates hypertension, heart failure and SARS-CoV-2-induced lung injury in mice. Recombinant B38-CAP is prepared with E . coli protein expression system more efficiently than recombinant soluble human ACE2. Here we show therapeutic effects of B38-CAP on abdominal sepsis- or acid aspiration-induced acute lung injury. ACE2 expression was downregulated in the lungs of mice with cecal ligation puncture (CLP)-induced sepsis or acid-induced lung injury thereby leading to upregulation of Ang II levels. Intraperitoneal injection of B38-CAP significantly decreased Ang II levels while upregulated angiotensin 1–7 levels. B38-CAP improved survival rate of the mice under sepsis. B38-CAP suppressed the pathologies of lung inflammation, improved lung dysfunction and downregulated elevated cytokine mRNA levels in the mice with acute lung injury. Thus, systemic treatment with an ACE2-like enzyme might be a potential therapeutic strategy for the patients with severe sepsis or ARDS.
A dual role for autophagy in a murine model of lung cancer
Autophagy is a mechanism by which starving cells can control their energy requirements and metabolic states, thus facilitating the survival of cells in stressful environments, in particular in the pathogenesis of cancer. Here we report that tissue-specific inactivation of Atg5 , essential for the formation of autophagosomes, markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage of tumour-bearing mice. Autophagy-defective lung cancers exhibit impaired mitochondrial energy homoeostasis, oxidative stress and a constitutively active DNA damage response. Genetic deletion of the tumour suppressor p53 reinstates cancer progression of autophagy-deficient tumours. Although there is improved survival, the onset of Atg5- mutant KRas G12D -driven lung tumours is markedly accelerated. Mechanistically, increased oncogenesis maps to regulatory T cells. These results demonstrate that, in KRas G12D -driven lung cancer, Atg5-regulated autophagy accelerates tumour progression; however, autophagy also represses early oncogenesis, suggesting a link between deregulated autophagy and regulatory T cell controlled anticancer immunity. Autophagy prolongs the survival of cells in stressful conditions but its role in cancer is unclear. Here, Rao et al . show that loss of the autophagic protein Atg5 enhanced cancer incidence but impaired tumour progression in a mouse model of lung cancer.