Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Perch, Michael"
Sort by:
European Society for Organ Transplantation (ESOT) Consensus Statement on the Use of Non-invasive Biomarkers for Cardiothoracic Transplant Rejection Surveillance
While allograft rejection (AR) continues to threaten the success of cardiothoracic transplantation, lack of accurate and repeatable surveillance tools to diagnose AR is a major unmet need in the clinical management of cardiothoracic transplant recipients. Endomyocardial biopsy (EMB) and transbronchial biopsy (TBBx) have been the cornerstone of rejection monitoring since the field’s incipience, but both suffer from significant limitations, including poor concordance of biopsy interpretation among pathologists. In recent years, novel molecular tools for AR monitoring have emerged and their performance characteristics have been evaluated in multiple studies. An international working group convened by ESOT has reviewed the existing literature and provides a series of recommendations to guide the use of these biomarkers in clinical practice. While acknowledging some caveats, the group recognized that Gene-expression profiling and donor-derived cell-free DNA (dd-cfDNA) may be used to rule out rejection in heart transplant recipients, but they are not recommended for cardiac allograft vasculopathy screening. Other traditional biomarkers (NT-proBNP, BNP or troponin) do not have sufficient evidence to support their use to diagnose AR. Regarding lung transplant, dd-cfDNA could be used to rule out clinical rejection and infection, but its use to monitor treatment response is not recommended.
European Society of Organ Transplantation (ESOT) Consensus Statement on Prehabilitation for Solid Organ Transplantation Candidates
There is increasingly growing evidence and awareness that prehabilitation in waitlisted solid organ transplant candidates may benefit clinical transplant outcomes and improve the patient’s overall health and quality of life. Lifestyle changes, consisting of physical training, dietary management, and psychosocial interventions, aim to optimize the patient’s physical and mental health before undergoing surgery, so as to enhance their ability to overcome procedure-associated stress, reduce complications, and accelerate post-operative recovery. Clinical data are promising but few, and evidence-based recommendations are scarce. To address the need for clinical guidelines, The European Society of Organ Transplantation (ESOT) convened a dedicated Working Group “Prehabilitation in Solid Organ Transplant Candidates,” comprising experts in physical exercise, nutrition and psychosocial interventions, to review the literature on prehabilitation in this population, and develop recommendations. These were discussed and voted upon during the Consensus Conference in Prague, 13–15 November 2022. A high degree of consensus existed amongst all stakeholders including transplant recipients and their representatives. Ten recommendations were formulated that are a balanced representation of current published evidence and real-world practice. The findings and recommendations of the Working Group on Prehabilitation for solid organ transplant candidates are presented in this article.
Trends in underlying causes of death in solid organ transplant recipients between 2010 and 2020: Using the CLASS method for determining specific causes of death
Monitoring specific underlying causes of death in solid organ transplant (SOT) recipients is important in order to identify emerging trends and health challenges. This retrospective cohort study includes all SOT recipients transplanted at Rigshospitalet between January 1st, 2010 and December 31st, 2019. The underlying cause of death was determined using the newly developed Classification of Death Causes after Transplantation (CLASS) method. Cox regression analyses assessed risk factors for all-cause and cause-specific mortality. Of the 1774 SOT recipients included, 299 patients died during a total of 7511 person-years of follow-up (PYFU) with cancer (N = 57, 19%), graft rejection (N = 55, 18%) and infections (N = 52, 17%) being the most frequent causes of death. We observed a lower risk of all-cause death with increasing transplant calendar year (HR 0.91, 95% CI 0.86–0.96 per 1-year increase), alongside death from graft rejection (HR 0.84 per year, 95% CI 0.74–0.95) and death from infections (HR 0.86 per year, 95% CI 0.77–0.97). Further, there was a trend towards lower cumulative incidence of death from cardiovascular disease, graft failure and cancer in more recent years, while death from other organ specific and non-organ specific causes did not decrease. All-cause mortality among SOT recipients has decreased over the past decade, mainly due to a decrease in graft rejection- and infection-related deaths. Conversely, deaths from a broad range of other causes have remained unchanged, suggesting that cause of death among SOT recipients is increasingly diverse and warrants a multidisciplinary effort and attention in the future.
Decline in Antibody Concentration 6 Months After Two Doses of SARS-CoV-2 BNT162b2 Vaccine in Solid Organ Transplant Recipients and Healthy Controls
Previous studies have indicated inferior responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination in solid organ transplant (SOT) recipients. We examined the development of anti-receptor-binding domain (RBD) immunoglobulin G (IgG) after two doses of BNT162b2b in SOT recipients 6 months after vaccination and compared to that of immunocompetent controls. We measured anti-RBD IgG after two doses of BNT162b2 in 200 SOT recipients and 200 matched healthy controls up to 6 months after first vaccination. Anti-RBD IgG concentration and neutralizing capacity of antibodies were measured at first and second doses of BNT162b2 and 2 and 6 months after the first dose. T-cell responses were measured 6 months after the first dose. In SOT recipients, geometric mean concentration (GMC) of anti-RBD IgG increased from first to second dose (1.14 AU/ml, 95% CI 1.08-1.24 to 11.97 AU/ml, 95% CI 7.73-18.77) and from second dose to 2 months (249.29 AU/ml, 95% CI 153.70-385.19). Six months after the first vaccine, anti-RBD IgG declined (55.85 AU/ml, 95% CI 36.95-83.33). At all time points, anti-RBD IgG was lower in SOT recipients than that in controls. Fewer SOT recipients than controls had a cellular response (13.1% vs. 59.4%, p < 0.001). Risk factors associated with humoral non-response included age [relative risk (RR) 1.23 per 10-year increase, 95% CI 1.11-1.35, p < 0.001], being within 1 year from transplantation (RR 1.55, 95% CI 1.30-1.85, p < 0.001), treatment with mycophenolate (RR 1.54, 95% CI 1.09-2.18, p = 0.015), treatment with corticosteroids (RR 1.45, 95% CI 1.10-1.90, p = 0.009), kidney transplantation (RR 1.70, 95% CI 1.25-2.30, p = 0.001), lung transplantation (RR 1.63, 95% CI 1.16-2.29, p = 0.005), and non-skin cancer comorbidity (RR 1.52, 95% CI, 1.26-1.82, p < 0.001). Immune responses to BNT162b2 are inferior in SOT recipients compared to healthy controls, and studies aiming to determine the clinical impact of inferior vaccine responses are warranted.
Prediction of herpes virus infections after solid organ transplantation: a prospective study of immune function
Herpes virus infections are a major concern after solid organ transplantation and linked to the immune function of the recipient. We aimed to determine the incidence of positive herpes virus (cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus type 1/2 (HSV-1/2), and varicella zoster virus (VZV)) PCR tests during the first year post-transplantation and assess whether a model including immune function pre-transplantation and three months post-transplantation could predict a subsequent positive herpes virus PCR. All participants were preemptively screened for CMV, and EBV IgG-negative participants were screened for EBV during the first year post-transplantation. Herpes virus PCR tests for all included herpes viruses (CMV, EBV, HSV-1/2, and VZV) were retrieved from the Danish Microbiology database containing nationwide PCR results from both hospitals and outpatient clinics. Immune function was assessed by whole blood stimulation with A) LPS, B) R848, C) Poly I:C, and D) a blank control. Cytokine concentrations (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-12p40, IL-17A, IFN-α, and IFN-γ) were measured using Luminex. We included 123 liver (54%), kidney (26%), and lung (20%) transplant recipients. The cumulative incidence of positive herpes virus PCR tests was 36.6% (95% CI: 28.1-45.1) during the first year post-transplantation. The final prediction model included recipient age, type of transplantation, CMV serostatus, and change in Poly I:C-induced IL-12p40 from pre-transplantation to three months post-transplantation. The prediction model had an AUC of 77% (95% CI: 61-92). Risk scores were extracted from the prediction model, and the participants were divided into three risk groups. Participants with a risk score <5 (28% of the cohort), 5-10 (45% of the cohort), and >10 (27% of the cohort) had a cumulative incidence of having a positive herpes virus PCR test at 5.8%, 25%, and 73%, respectively (p < 0.001). In conclusion, the incidence of positive herpes virus PCR tests was high, and a risk model including immune function allowed the prediction of positive herpes virus PCR and may be used to identify recipients at higher risk.
Use of T Cell Mediated Immune Functional Assays for Adjustment of Immunosuppressive or Anti-infective Agents in Solid Organ Transplant Recipients: A Systematic Review
Defining the optimal dosage of the immunosuppressive or duration of anti-infective agents is a challenge in solid organ transplant (SOT) recipients. We aimed to systematically review the literature regarding the use of T cell mediated immune functional assays (IFAs) for adjustment of the immunosuppressive or anti-infective agents in SOT recipients. We systematically searched PubMed, Scopus, EMBASE, Web of Science (WOS), Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov to find human interventional studies or study protocols that used either in-house or commercially available IFAs for adjustment of the immunosuppressive or anti-infective agents in SOT recipients. We included six clinical trials and six study protocols. Four out of the six clinical trials used interferon-γ release assays for cytomegalovirus (IGRA-CMV), and five out of the six registered study protocols planned to use IGRA-CMV for adjustment of anti-CMV antiviral (Valganciclovir) prophylaxis or preemptive therapy in SOT recipients. Primary or secondary anti-CMV prophylaxes were discontinued in SOT recipients who had positive IGRA-CMV results without an increase in the rate of CMV infection or reactivation. Among other IFAs, one clinical trial used interferon-γ release assays for tuberculosis (IGRA-TB), and one study used ImmuKnow for adjustment of the duration and dosage of isoniazid and tacrolimus, respectively. Our systematic review supports a promising role for the IGRA-CMVs for adjustment of the duration of anti-CMV antiviral prophylaxis in SOT recipients. There are limited data to support the use of IFAs other than IGRA-CMVs for adjustment of immunosuppressive or anti-infective agents. Further multicenter randomized clinical trials using IFAs other than IGRA-CMVs may help in personalized immunosuppressive or prophylactic anti-infective therapy in SOT recipients.
Humoral and T-cell response 12 months after the first BNT162b2 vaccination in solid organ transplant recipients and controls: Kinetics, associated factors, and role of SARS-CoV-2 infection
We investigated humoral and T-cell responses within 12 months after first BNT162b2 vaccine in solid organ transplant (SOT) recipients and controls who had received at least three vaccine doses. Furthermore, we compared the immune response in participants with and without previous SARS-CoV-2 infection. We included adult liver, lung, and kidney transplant recipients, and controls were selected from a parallel cohort of healthcare workers. At 12th-month, the IgG geometric mean concentrations (GMCs) (P<0.001), IgA GMCs (P=0.003), and median IFN-γ (P<0.001) were lower in SOT recipients than in controls. However, in SOT recipients and controls with previous infection, the neutralizing index was 99%, and the IgG, and IgA responses were comparable. After adjustment, female-sex (aOR: 3.6, P<0.009), kidney (aOR: 7.0, P= 0.008) or lung transplantation (aOR: 7.5, P= 0.014), and use of mycophenolate (aOR: 5.2, P=0.03) were associated with low IgG non response. Age (OR:1.4, P=0.038), time from transplantation to first vaccine (OR: 0.45, P<0.035), and previous SARS-CoV-2 infection (OR: 0.14, P<0.001), were associated with low IgA non response. Diabetes (OR:2.4, P=0.044) was associated with T-cell non response. In conclusion, humoral and T-cell responses were inferior in SOT recipients without previous SARS-CoV-2 infection but comparable to controls in SOT recipients with previous infection.
Management of Post-transplant Infections in Collaborating Hospitals (MATCH) Programme: a prospective cohort of all transplant recipients at Copenhagen University Hospital—Rigshospitalet, Denmark
PurposeThe Management of Post-transplant Infections in Collaborating Hospitals (MATCH) programme, initiated in 2011 and still ongoing, was created to 1) optimise the implementation of existing preventive strategies against viral infections in solid organ transplant (SOT) recipients and allogenic haematopoietic stem-cell transplant (HSCT) recipients and 2) advance research in the field of transplantation by collecting data from a multitude of sources.ParticipantsAll SOT and HSCT recipients at Copenhagen University Hospital, Rigshospitalet, are followed in MATCH. By February 2021, a total of 1192 HSCT recipients and 2039 SOT recipients have been included. Participants are followed life long. An automated electronic data capture system retrieves prospective data from nationwide registries. Data from the years prior to transplantation are also collected.Findings to dateData entries before and after transplantation include the following: biochemistry: 13 995 222 and 26 127 817; microbiology, cultures: 242 023 and 410 558; other microbiological analyses: 265 007 and 566 402; and pathology: 170 884 and 200 394. There are genomic data on 2431 transplant recipients, whole blood biobank samples from 1003 transplant recipients and faeces biobank samples from 207 HSCT recipients. Clinical data collected in MATCH have contributed to 50 scientific papers published in peer-reviewed journals and have demonstrated success in reducing cytomegalovirus disease in SOT recipients. The programme has established international collaborations with the Swiss Transplant Cohort Study and the lung transplant cohort at Toronto General Hospital.Future plansEnrolment into MATCH is ongoing with no planned end date for enrolment or follow-up. MATCH will continue to provide high-quality data on transplant recipients and expand and strengthen international collaborations.
E-cigarette or vaping product use-associated lung injury (EVALI). A case report of a 19-year-old male in Denmark
Summary This case report presents a 19-year-old-male admitted to the hospital with symptoms consistent with E-cigarette or vaping product use-associated lung injury (EVALI). While EVALI primarily has been seen in the United States, there have only been a few cases reported in Europe. The patient in this case report met the criteria for confirmed EVALI as outlined by the Centers for Disease Control and Prevention (CDC). The patient exhibited severe respiratory distress, requiring intubation, aggressive treatment with corticosteroids, and additionally extracorporeal membrane oxygenation (ECMO) therapy. Comprehensive microbiological testing excluded infectious etiologies, leading to the diagnosis of exclusion, EVALI. This case diverges from many instances in the United States as the patient does not claim to have used a vaping device containing vitamin E acetate (VEA)/tetrahydrocannabinol (THC), thus underscoring the importance of further research into EVALI’s underlying etiologies. This report is based on a case presentation.
Booster Vaccination Against Invasive Pneumococcal Disease and Hepatitis B in Previously Vaccinated Solid Organ Transplant Recipients Without Seroprotection
Background: Despite pre-transplantation vaccination against invasive pneumococcal disease (IPD) and hepatitis B virus (HBV), most solid organ transplant (SOT) recipients are without post-transplantation seroprotection against IPD and HBV. We aimed to determine the seroprotection rates and changes in antibody concentrations after booster vaccination against IPD and HBV in SOT recipients without post-transplantation seroprotection after pre-transplantation vaccination. Furthermore, we aimed to identify risk factors associated with non-response to booster vaccination. Methods: In this prospective cohort study, we included adult SOT recipients without post-transplantation seroprotection against IPD who then received the 23-valent pneumococcal polysaccharide vaccine (PPSV23) booster, as well as adult SOT recipients without seroprotection against HBV who then received the Engerix-B® booster after pre-transplantation vaccination. Logistic regression models were used to analyze risk factors for non-response to booster vaccination. Results: We included 50 SOT recipients in analyses of booster vaccination against IPD and 52 SOT recipients in analyses of booster vaccination against HBV. Seroprotection rates were 52% after booster vaccination against IPD and 7.7% after booster vaccination against HBV. The median geometric mean concentration of pneumococcal antibodies increased from 0.54 µg/mL IgG (interquartile range, IQR: 0.35–0.77) to 1.21 µg/mL IgG (IQR: 0.87–1.62) after booster vaccination (p < 0.001). Having pre-transplantation seroprotection against IPD at time of listing was associated with lower odds of non-response to booster vaccination. We were not able to identify risk factors for non-response to HBV booster vaccination. Conclusions: Booster vaccination improved seroprotection against IPD, but not HBV. Further studies are needed to examine optimal vaccination strategies for SOT recipients.